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Unit I 

 

Measure Theory 

 

We need the following definitions and results 

Definition : 

 A Collection  of subsets of X is called an algebra of sets or a 

boolien algebra if, 

i. A B  whenever A,B   

ii.   is in   whenever A   

 

 By Demorgan’s Law A B is in   whenever A,B    

 

Result 1: 

 Let  be an algebra of subsets and {Ai} a sequence of sets in  .Then 

there is a sequence {Bi} of sets in  , such that Bi Bj =   for i j and ⋃   
 
    

=⋃   
 
   . 

 

Definition:  

 An algebra   of sets is called a sigma algebra or a boral field, if 

every union of a countable collection of sets in   is again in  . 

 By Demorgan’s Law, the intersection of countable of sets in   is 

again in    

 

Result 2: 

 Given any collection δ of subsets of X, there is a smallest sigma 

algebra that contains δ, (i.e) there is a sigma algebra   containing δ such that if 

ẞ is any sigma algebra containing δ such that    ẞ. 

 

Definition: 

 The collection ẞ of borel sets is the smallest sigma algebra which 

contains all of the open sets.  
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1.1 Lebesgue Measure 

 

 

 

Definition: 

 The length  (I) of the interval I is defined to be the difference of 

end points of the interval, if  I is bounded and if     I is unbounded. 

 

Definition: 

 A set function m that assigned to each sets E in some collection   

of sets of real numbers a non-negative extended real numbers mE, called 

measure  of  E. 

 

Properties: 

i. mE is defined for each set E of real numbers. (i.e)          

ii. For an interval I    ,           

iii. If {En} is a sequence of disjoint sets (for which m is defined) 

      ⋃   
 
     ∑      

 
    

iv. m is translation invariant. 

(i.e) If E is a set for which m is defined and if E+ y = {x+ y ; x  E} 

obtained by replacing each point x   E by the point x+ y.  

Then m (E+ y)= m(E). 

 

Definition: 

 We say that m is a count ably additive measure. If it is a non-

negative extended real valued function whose domain of definition is a  -

algebra   of sets we have m ( En) = ∑     for each {En} of disjoint sets in 

   

Properties: 

 Let m be a count ably additive measure defined for all sets in    

Then we have the following properties. 

i) m(E) ≥0, for all E    
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ii) If A,B    and A C B   ⇒  m(A) ≤ m(B) 

Proof: 

i) It follows from the definition . 

ii) m(A B) = m(A) + m(B-A) 

⇒ m(B) = m(A) + m(B-A)  

⇒m(A)≤  m(B)   [since m(B-A) ≥ 0] 

This property is called monotonicity. 

iii) Let the collection {En} be any sequence of sets in  .  

Then    ⋃   
 
     ∑     

 
    . This property is called countably 

subadditivity. 

For, 

Let {En} be a sequence of sets in    By Result 1, there exists a {  
 } of  disjoint 

sets in   such that ⋃   
 
   = ⋃   

  
   , where   

 = En-  (E1 E2 …….  En-1), 

  
 CEn 

                 
   

                                         ∑    
  

    

              ∑    
 
    

Observation: 

 If there is a set A    such that  mA < ∞. Then m  = 0 

For, any set A = A    

          m(A) = m(A  ) = m(A) + m( ) 

               ⇒ m( ) = 0     [m(A) < ∞] 

Example: 

 Let      { 
                             
| |                        
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 n is countable additive set function and translation invariant. It is defined for all 

sets of real numbers. This measure is called counting measure. 

Solution: 

 Let {En} be a sequence of disjoint sets in R. One of the sets, say,  En is 

infinite.  

Then         = |   |     

       = ∑ |  |
 
    

        = ∑      
 
    

If all the  sets in {En}are finite and En      if n m. 

Then n      = |   | = ∑ |  |
 
    

                    =∑      
 
    

⇒ n is countably additive. 

Also, n(E+ y) = |   | 

   = | | 

   = n(E) 

⇒ n is translation invariant. 

 

     1.2 Outer Measure  

Definition: 

 For each set A of real numbers. Consider a countable collection {In} of 

open intervals that cover A. (i.e) Collections for which A    In, and for each 

such collections, consider the sum of the length of the interval in the collection. 

Then the outer measure m* A to be the infimum of  all such sums. 

(i.e) m*A = 
   
       

∑       

 Then the immediately the following is observed. 

i) m*A ≥ 0 

ii) m*A  = mA  , A   

(i.e) m* = m/  
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iii) Since m  = 0  we have  m*  = 0 

iv) Let    , then m*A ≤  m*B 

For, let  

 α = {{In}/A   In} 

 β = {{In}/B    In} 

 

⇒ β   α 

⇒ Inf ∑       α  ≤  inf ∑       β  

⇒ inf ∑             ≤  inf ∑              

 ⇒  m*A ≤  m*B 

v)  m*({x}) = 0 

For, {x}   (x- 
 
 
 , x+

 
 
 ) = I 

m*                       

⇒ m*{x} = 0   [since    is arbitrary] 

THEOREM :1 

The  outer  measure of an interval is its length. 

Proof: 

First we consider the case of closed finite interval, say [a,b]. 

Now [a,b] ⊂ (a-  , b+ ) 

m*[   ]                = b-a+   

Since    is arbitrary, m*[   ]    b-a 

To prove:    m [   ]    b-a 

Let [a,b] ⊂ ⋃   
 
  

            By Heine Borel  theorem,  there exists a finite sub collection I1,I2,……,Im 

intervals such that I ⊂ ⋃   
 
  and since the sum of the length of the finite 

collection is no greater than the sum of the length of the original collection and 

hence it is enough toprove that ∑   
     Ik   b-a  for finite collections  {In} that 

cover [a, b]. 

            Since a is contained in   In, there must be one of the In that contains a. 

             Let this be the interval (a1,b1). 
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    Then we have  a1< a < b1.If b1 < b, then b1   (a,b) 

     Since b1 ∉ (a1,b1), there exists an interval (a2,b2) in the collection {In} such 

that b1   (a2,b2)  (i.e) a2 < b1 < b2 

Continue in this fashion , we obtain a sequence (a1,b1),(a2,b2),……,(ak,bk) from 

the collection  {In} such that  ai < bi-1 < bi. 

    Since {In} is a finite collection, our process must terminate with some finite 

interval (ak, bk). 

       (i.e) b   (ak , bk)  (or) ak < b < bk. 

∑   
    ( Ik )   ∑   

    (ai,bi) 

                =   (a1,b1)+……+   (ak,bk) 

                = b1- a1+………+bk- ak 

                = bk - (ak-bk-1) - (ak-1-bk-2) -……..- (a2-b1) - a 1 

                   ≥ bk-a1      [since  ai < bi-1] 

As  a1 < a   and  b < bk 

  bk-a1  >  b-a 

∑     ( In ) > b-a 

By taking inf we have  inf  ∑     ( In )   b-a 

                                          m*[a,b]    b-a 

If  I is any finite interval then given   > 0 there is a closed interval J ⊂ I such      

 (J) >   (I) -   

Now,   (I) -  <   (J)  = m*(J) ≤ m*(I)  ≤ m*( )̅ =   ( )̅ =   (I). 

  (I) -   < m*(I) ≤   (I) 

          If I is an infinite interval, then given any real number  , there is a closed 

interval J⊂ I with    (J) =  . 

Hence, m*(I) ≥ m*(J) =   (J) =    

Since m*(I) ≥  , for each   , we have  m*(I) =   =   (I).  Hence  proved. 
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THEOREM:2 

Let {An} be a countable collection of sets of real numbers. Then  

m*(  An)  ≤  ∑  m*( An  ) [This proposition is called count ably sub additivity 

of  m*]. 

Proof:  

     If one of the sets An has infinite outer measure then inequality holds trivially. 

     If m
*
An is finite then given      there is a countable collection {In, i}i of 

open intervals such that An⊂ ⋃        and  ∑  (In, i) < m
*
An + 2

-n    (by definition 

of  m*). 

     Now the collection   {In, i}n, i = ⋃   In, i}i is countable,  being that union of the 

countable number of countable collection and covers union of  An. 

              m*(  An) ≤ ∑     (In, i) 

                               = ∑ ∑    (In, i ) 

                               ≤ ∑    m
*
An + 2

-n ) 

                              =  ∑  m*
 An +   

    Since    is arbitrary,  m*(  An) ≤ ∑  m*An. 

COROLLORY:3 

If A is countable, then m
*
A=0 

Proof: 

Given A is countable. Then A= ⋃   
   xn} 

m
*
A = m

*
(⋃   
   xn}) 

        ≤ ∑   
   m

*{xn}, as m
*
{xn}= 0 

         = 0 

  m
*
A= 0   (as m

*
A ≥ 0) 

 

COROLLORY:4 

The set [0,1] is not countable. 
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Proof:     m*[0,1] =   [0,1]      

   
Hence , [0,1] is not countable  [by corollary :3] 

Definition: 

         A set which is a countable union of closed sets is called   . 

          We say that a set as    if it is the intersection of countable collection of 

open sets. Note that Complement of     is    and vise versa. 

 

Theorem:5    

   Given any set A and any     there is an open set O such that A⊂O and  

m
*
O   m

*
A +   . There is a G     such that A ⊂ G and m

*
A = m

*
G. 

Proof: 

    Given     , by the definition of  m
*
, there is a countable collection {In} of 

open intervals A⊂  In such that  ∑  (In) < m
*
A +    -------(1) 

Let O =  In ⇒ O is open  

m
*
O = m

* In 

            ∑   m* In 

          = ∑  (In) 

         < m
*
A +    ------- (2)  (by (1)),  

Let    =  
 

 
  

Then by (2), for all  n   there  exists   an  open set Gn such that A ⊂ Gn and  

m
*
Gn  ≤  m*

A+ 
 

 
 --------(3) 

Let G =   Gn , then G is a    set and A⊂G. ⇒ m
*
A ≤ m*G 

Now A⊂ Gn    n  and Gn is open. Also m
*
G ≤ m*Gn ≤ m*

A+ 
 

 
  n  (by(3)) 

 ⇒ m
*
G ≤  m*A. Hence,  m*A = m*G. 

LEMMA:6 

                If  m
*
A=0  then  m*(A B) = m

*
B 
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Proof: 

     B ⊆ A B ⇒ m
*
B ≤ m*

(A B)    (1) 

By count ably sub additivity property, m*(A B) ≤ m*
A +m

*
B 

Given, m
*
A=0. Therefore, m*(A B) ≤ m*

B     (2) 

From  (1) and (2), m*(A B) = m
*
B 

 

             1.3 Measurable   Sets  and  Lebesgue  Measure 

 

Definition: 

             A set E is said to be measurable if for each set A, we have  

                        

 

Remark: 

(i) Since A= (A E)   (A E
c
) 

⇒ m
*
(A) ≤ m*(A E) + m

*
(A E

c
) 

We  have  the  following  definition 

E is measurable if for each A we have, m
*
A ≥ m*(A E) + m

*
(A E

c
). 

(ii) Since the definition of measurability the symmetric in E and E
c
,  we 

have E
c
 is measurable  whenever E is measurable. Clearly,   and R are 

measurable. 

LEMMA:7 

If  m
*
E=0  then  E is measurable. 

Proof: 

Let A be any set. 

A   E ⊂ E ⇒ m*(A E) ≤ m*E = 0 

                     ⇒ m*(A E) = 0 

 Also, A ∩       ⇒   (A∩  )    (A) 

Therefore,   (A)    (A∩  ) + 0 
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             ⇒   (A)    (A∩  )+   (A∩E)  ⇒ E is measurable. 

 

LEMMA:8 

If     and     are measurable sets, then         is measurable. 

Proof: 

           Let A be any set. Since,    is measurable we have, 

  (    
 )    (    

    )   
      

    
   

Since A ∩ (     ) = (A ∩   ) U (A ∩   ∩   
 ), we have  

     (A ∩ (     ))   
 (A ∩   ) +   (A ∩    ∩   

 ) 

   ⇒   (A∩(     )) +   (A∩(  
  ∩   

 ))    (A ∩   ) +   (A ∩    ∩   
 )             

                                                                                      +  (A ∩ (  
  ∩   

 )) 

                                            =   (A ∩   ) +   (A ∩   
 )                  ( by (1) ) 

         (A)    [ since    is measurable] 

Therefore,   (A)    ((A ∩ (     )) +   (A ∩         
 ) 

                                   ⇒        is measurable. 

 

 

LEMMA :9 

                 A family ɱ of measurable sets is an algebra of sets. 

Proof: 

           Let    ,      ɱ 

⇒       is measurable     ( by lemma 8) 

           ⇒         ɱ 

Also, E   ɱ  ⇒      ɱ    (by definition) 

Therefore, ɱ is an algebra. 

 

LEMMA : 10 

Let A be any set and     ,    , …….,   be a finite sequence of disjoint 

measurable sets . Then   (A ∩ (⋃   
 
   )) =  ∑         

 
    

Proof: 

       We prove the lemma by induction on n. 

The result is clearly true when n = 1 

Assume that the result is true if we have n-1 sets     

Since        = φ  , i   j we have , (A ∩ (⋃   
 
   ))     =      

 (A ∩ (⋃   
 
   ))    

  = (A ∩ (⋃   
   
   ))    

  

(1) 
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Since   is measurable we have, 

  (A ∩ (⋃   
 
   )) =   ( A ∩ (⋃   

 
   )     + 

 ( A ∩ (⋃   
 
   )    

 ) 

                               =          +   (( A ∩ (⋃   
   
   )   

 ) 

                               =          +   (A ∩ (⋃   
   
   ) 

                               =          + ∑         
   
      ( by induction hyp) 

                               = ∑         
 
    

The theorem is true for all values of n . 

 

THEOREM:11 

                The collection ɱ of measurable sets is a   – algebra, that is, 

complement of a measurable set is measurable , union of a countable collection 

of measurable sets is measurable. Moreover, every set with outer measure zero is 

measurable. 

Proof: 

      By lemma 9, ɱ is an algebra of sets. 

 

Claim: ɱ is a   – algebra. 

It is enough to prove, E = ⋃   
 
    ,     ɱ  ⇒ E   ɱ  

  Let E = ⋃   
  

    ,   
    ɱ 

By a result, we have   E = ⋃   
 
    and    ∩    = φ,     and 

   ⋃   
 
   = ⋃   

  
    

Let A be any set.  Let   = ⋃   
 
      

 ⇒    is measurable (i.e)    Є ɱ 

Now ,    = ⋃   
 
    ⋃   

 
     E 

     =      E , for all n       =   
  ⊃    , for all n 

Since    is measurable , 

          =           +        
   

                                        +        ) 

                =        ⋃   
 
     

                           = ∑         
 
            (by lemma 10) 

Therefore ,           ∑         
 
    +        ) 

   This is true for every n and L.H.S is independent of  n. 

We have ,           ∑          
 
    +        ) 

          [         ]+        )   ( by countably 

subadditive property) 
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               +        ) 

    ⇒  E is measurable  

Therefore , ɱ is  –algebra 

For,  Intersection of countable collection of sets is measurable. 

       Let    Є ɱ    ⇒   
  Є ɱ    ⇒ ⋃   

  
    Є ɱ 

                 ⇒  ⋃   
  

       
Є ɱ   ⇒ ∩   Є ɱ 

Also by lemma 7, every set with outer measure zero is measurable.
 

 

LEMMA: 12 

     Open interval  (a, ) is measurable. 

Proof: 

   Let A be any set  

Let    = (a, ) ,    = A ∩ (- ,a] 

To prove (a,  ) is measurable. 

Claim:               +        

         If        =   then there is nothing to prove 

         If         ,then given Є 0 , there exists a countable collection of open 

intervals {   } which covers A and for which ∑    )   
     + Є → (1) 

by the  definition of outer measure . 

           Let    
  =      (a, ) and    

   =    ∩ (-   ] 

Then   
  and   

   are intervals (or) empty. 

Now ,     ) =     
   +     

     =      
   +      

      → (2) 

Since     Ϲ U  
  , 

           (     
  U  

   ∑     
   

Similarly,     U  
   ,  

          (     
  U  

    ∑      
    

Therefore,   (    +    (    ∑  
    
   + ∑      

    

                                                 ∑       
   + ∑      

   ) 

                                                 = ∑    )   (by (2)) 

                                                         (   +      (by (1)) 

Since,   is arbitrary ,    (    +    (      
 ( ) . 

 

THEOREM:13 

       Every Borel set is measurable. In particular , each open set and each closed 

set is measurable. 
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Proof: 

   Let Ɓ be the family of Borel sets. 

By definition ,Ɓ is the smallest   – algebra containing all the open sets   →(1) 

Also ɱ, the collection of all measurable sets is    – algebra. 

           Since (a, ) Є ɱ, ⇒ (a, )
c 
Є ɱ , for all a   ⇒ (-   ] Є ɱ , for all a 

Now , (- ,b) = ⋃ (     
 

 
+ 

    

          ⇒ ⋃ (     
 

 
+ 

    Є ɱ   [as ɱ is a   – algebra] 

          ⇒ (- , b) Є ɱ 

Now , (a, b) = (- ,b) ∩ (a, ) 

Therefore , every open interval is measurable 

Since each open set is the countable union of open intervals , every open set 

belongs to ɱ. Then every closed set is measurable. Therefore, ɱ is a  -algebra 

containing all the open sets.Therefore,     [by 1]. Hence the result. 

                             

Remark: 

        If  E is measurable set, we define the lebesgue measure mE be the outer 

measure of E.  (ie.)  m= m*/ ɱ. It is means that the domain of m is ɱ and the 

domain of m* is   (R).  (ie.) If  E is measurable set, mE= m*E. 

 

 

THEOREM :14 

Let {Ei} be a sequence of measurable sets, then m( Ei) ≤ ∑mEi. If the sets 

{En} are pairwise disjoint then m( Ei) = ∑ m   . 
 

 

Proof: 

         If {Ei} is a finite sequence of disjoint measurable sets, then by lemma 10  

(by taking A = R) we have,  m* ⋃   
 
     = ∑   

   m*   .   
      m ⋃   

 
     = ∑   

   m     and so m is finitely additive.  

         Let {En} be an infinite sequence of  pair wise disjoint measurable sets.  

           As ⋃   
 
   ⊃ ⋃   

 
       

                 m ⋃    
 
     ≥  m(⋃   

 
   ) 

         = ∑    
 
         is true for every n. 

Since  Left hand side  of  inequality is independent of n, We have,  

m ⋃    
 
     ≥  ∑   

     .  
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The reverse inequality follows from the countable sub additive property, 

         m ⋃     
 
   ≤ ∑    

   i. Therefore, m ⋃    
 
    = ∑   

      .       
 

Theorem:15 

Let {En} be an infinite decreasing sequence of measurable sets, that is with 

 En+1  En , for each n. Let      be finite and m (⋂   
   i) = i       . 

Proof: 

Let  E = ⋂   
   i . Let           .  

Then E1 - E = ⋃   
   i  and the set Fi are pair wise disjoint. 

Hence  m(E1  E) = m(⋃   
   i)  = ∑    

   i    = ∑   
   (Ei   Ei+1)  (1) 

Since  E   E1, E1 = E   (E1  E) and  mE1 = mE + m(E1 E)   (2) 

Similarly,   Since Ei+1  Ei        Ei = Ei+1   (Ei   Ei+1) and                                 

mEi = mEi+1   m(Ei   Ei+1).  Also   mE ≤  mE1< ∞   

 m(E1-E) = mE1- mE   [by (1)].  

And  m(Ei   Ei+1) = mEi - mEi+1   [since, Ei+1  Ei   E1 and  mEi+1 ≤  mE1 < ∞ ] 

Therefore, mE1 - mE  =  m(E1   E) 

                                       = ∑   
   (Ei   Ei+1)     [by (1)] 

                                       = ∑    
   Ei   mEi+1)      

                                       =  i 
   
∑      
   Ei   mEi+1)      

                                       =  i 
   

 (mE1 - mEn) 

     mE1- mE =  mE1-  i 
   

 mEn 

                                 mE =  i 
   

 mEn   [since, mE1< ∞] 

            m(⋂   
   i) =  i        . 

 

THEOREM:16 

 Let E be the given set, then the following are equivalent 

i) E is measurable. 

ii) given      there is an open set O contains E with m*(O-E)    

iii) given      there is a closed set F contained in E with m*(E-F)    

iv) there is a G in    with E   and m*(G-E)=0 

v)  there is a F in     with  F E such that m*(E-F) = 0 

m*E is finite ,then the above statements are equivalent to (vi). 

vi) given     ,there is a finite union  of open intervals such that m*(U  E)    

Proof: 

We prove the theorem as follows: 

(i) => (ii)=> (iv)=>(i) 
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(ii) => (iii)=> (v)=>(i) and  (i) (vi) 

step I: 

        (i) => (ii) 

 Given E is measurable. 

Case (i): 

  Suppose  m*E = mE <     with  m
*
(E-Fn) < 

 

 
 

 Given    , there exists a collection {In} of open intervals such that           

E    In and  ∑    n) ≤ m*E +   .     

            Let  O = In .Then mO = m( In)  ≤  ∑  n   = ∑    n) 

   mO ≤  m*E +        (1) 

Now   E   In = O 

 => m*O = m*E + m*(O-E) 

                    => m*(O-E) = m*O - m*E [since mE is finite] 

        => m*(O-E) ≤  m*E +   - m*E 

 =   [since mO = m*O  and  O is measurable] 

 =>  m*(O-E) <   

Case(ii): 

 Let m*E is infinite 

Let E ⋃   
   n, where {In} is a collection of intervals of finite length. 

Define  En=E  In     =>   E= ⋃   
   n 

As E, In are measurable , E  In is measurable. ⇒  En is measurable for all n. 

Now  En   In => m*En < m*In <   ⇒  m*En is finite for all n. 

By case(i), for given     , there exists an open set  Gn  such that  

 En   Gn, n = 1,2,3,…. and m*(Gn – En) <  /2n
 

   Let  O = ⋃   
   n   => O is open  

Consider  O - E =  ⋃   
   n - ⋃   

   n 

        ⋃    
   n- En) 

   m*(O - E) ≤  m*(⋃    
   n- En)) 

                     ≤  ∑   
   *(Gn- En) 

        <  ∑
 

  
 
   

 
 =    =>  m*(O - E) <   

(ii) => (iv): 

Given    , there exists an open set O with E O such that  m*(O-E) <   

For each n, taking  = 1/n we get an open set On such that E  On with   

m*(On-E) < 1/n  (1) 

  Let G=  n, then G      

       Since  E  On,       =>      G-E   On-E,     

                                        =>    m*(G-E) ≤  m*( On-E)  <  1/n,   n 
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                     Therefore,  m*(G-E) = 0 

(iv)=>(i): 

 There is a G in    with E   G and m*(G-E) = 0 

          Since each open set is measurable, each    set is measurable. 

          Therefore, G is measurable. 

Also  m*(G-E)=0,then by lemma 7, G-E is measurable. 

           But E = G-(G-E) and hence E is measurable. 

 

Step II: 

(ii) =>(iii): 

Now (i) => (ii) follows from step I  

⇒  E is measurable ⇒  E
c
 is measurable. 

Given    , there exist an open set O ⊃ E
c
 such that  m*(O - E

c
)<   

 O
c    E 

Since O is open, F = O
c
 is closed. 

   Now F  E and  m*(E-F) = m*(E-O
c
) = m*(O-E

c
) <   

 

(iii)=> (v): 

Given     , there exists a closed set C such that C   E and m*(E- C) <   

For each n, there exists a closed set Fn  such that   Fn  E with  m*(E- Fn) < 
 

 
 

 Let F =  Fn.  F is a Fζ  set 

Now, Fn   E for all n. Then  F   E 

 Since  Fn  F => E-F   E - Fn 

m*(E-F)    m*
(E- Fn) < 

 

 
 , for all n   ⇒  m*

(E-F) = 0 

(v) => (i) : 

        Given, there exists a  Fζ  - set F E such that m
*
(E-F)=0 

Since Fζ  set is measurable, F is measurable. 

Also, m
*
(E-F)=0, by lemma7, E-F is measurable. 

But, E = (E-F)   F. Since F is measurable, E is measurable 

Step III: 

(i)(vi) 
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         To Prove  (i) => (vi) 

Suppose E is measurable. 

Given     there exists an open set O ⊃ E such that m
*
(O-E)  

 

 
 ---(1) (by (ii)) 

As mE is finite ((i.e) mE <  ) and m(O) = mE + m(O-E) <   

As O is an open set, O is the disjoint union of open intervals Ii,  (i.e) O=⋃   
   i , 

Ii   Ij=   (i j).     Therefore, m(O) = m(⋃   
   i)  = ∑   

   Ii = ∑   
    Ii  ) 

Now,   m(O) <     ⇒ There exists n such that ∑   
      Ii)  <  /2                           

Let U = ⋃   
   i   

E  U = (E-U)   (U-E) 

E U   (O-U)   (O-E) [
.
.
.
 E O & O U ] 

m
*
(E  U)   m

*
(O-U)+m

*
(O-E)         [

.
.
. 
E O & O U] 

                < 
  

  
 + 
 

 
 =              [O-U=∑   

   i - ∑      i =∑   
     i 

                                                    m
*
(O-U)  ∑       

 
      , by definition] 

           Therefore,  m
*
(E U) <    

(vi) => (i): 

      Conversely, suppose given      there exists intervals {Ii}
 
   

 such that 

U=⋃      i  and m
*
(E U) <   

     Let     be given and also given m
*
E <   

 Therefore, there exists an open set O ⊃ E such that m
*
O < m

*
E +  /3-----(1)                                                                                              

[by Theorem 5] 

  Also given there exists intervals {Ii}
 
   

 such that m
*
(E U) <  /3 ----------(2),  

where U= ⋃      i    

Let J = U   O . Then J is open  

Also, J E = (J E) – (J E) 

Now, J E = (U O)  E = U   (O E) = U   E  [
.
.
. 
E   O] 

J E   U E  ⇒ J E   U E. 
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        m
*
(J E)   m*

(U E) <  /3  ---------- (3) (by (2)) 

O E   (O J)   (J E)         [as O-E  (O-J) (J-E) 

                                           and  E-O  (E-J) (J-O)] 

m
*
(O E)   m*

(O J) + m
*
(J E) 

But  O   J = O - J     [  O ⊃ J] 

     Therefore, m
*
(O   J) = m

* 
(O - J) 

                                      = m
*
(O) – m

*
(J)  [  O, J open => O, J are measurable]  

                                                                         (4) 

But E   J   (E-J) ⇒ E   J   (E J) 

m
*
E     

m
*
J + m

*
(E   J)  ⇒ m*

E  <  m
*
J +  
 

 
   (by (3) )                       (5) 

Now,  m
*
(O E)   m

*
(O J) + m

*
(J E) 

                           = m
*
(O) - m

*
(J) + m

*
(J   E)        (by(4)) 

                             m
*
E + 
 

 
 – m

*
J +  
 

 
  ( by(1) & (3)) 

                             m
*
J +  
 

 
 – m

*
J + 
 

 
 (by(5)) 

                           =   

           m
*
(O E) <   

Since  E   O => O   E = O - E 

          m*
(O - E) <  . This proves (ii) 

By step II,      (ii) => (i)       (i.e.) E is measurable. 

 

1.4 Measurable Functions 

LEMMA:17 

     Let f be an extended real valued function whose domain is measurable. Then 

the following statements are equivalent 

(i) For each real number  , the set {x/ f(x)> } is measurable. 

(ii) For each real number  , the set {x/ f(x)   } is measurable. 
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(iii) For each real number  , the set  {x/ f(x)<  } is measurable. 

(iv) For each real number  , the set {x/ f(x)   } is measurable. 

These statements imply (v) 

(v) For each extended real number  , the set {x/f(x)=  } is 

measurable. 

Proof: 

       Let D = the domain of  f . D is measurable (given) 

            

          Given : {x/f(x)>  } is measurable for all   

Now, {x/f(x)     } = D - {x / f(x) >   }.  Since, the difference between two 

measurable sets is measurable we have {x / f(x)    } is measurable. 

              

         Suppose  {x / f(x) <   } is measurable. 

Now                            . Since D is measurable, we have 

                            is measurable. 

     ⇒       

        Suppose              is measurable. 

Now                                

 Since the difference of two measurable sets is measurable 

Therefore               is measurable. 

Hence, we have proved     ⇒      ,             

Similarly, we can prove     ⇒    . 

      ⇒      

            Since                 ⋂             
 

 
    

     and the 

intersection of a sequence of measurable sets is measurable 

        Therefore ,                is measurable. 
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     ⇒     

               ⋃          
       

 

 
      and the union of a 

sequence of measurable sets is measurable. Therefore,                is 

measurable. 

           Hence all the above four statements are equivalent. 

     ⇒     

          If     is real,                         ⋂                

Therefore,                together implies     

      Since              ⋂               
    

By       ,                                

⇒  ⋂                               
    

     ⇒                   

       By     ,                              

⇒  ⋂                             
    

Hence           ⇒    . 

 

Definition: 

        An extended real valued function f is said to be Lebesgue measurable, if its 

domain is measurable and it satisfies one of the first four statements of the 

above proposition. 

Note: 

                                          

           A continuous function on  measurable set is measurable. 

      For any real    ,            is open. 

⇒             is measurable for all  . 
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   Therefore,                               ⇒                   

 Recall   a real valued function    defined on an interval [    ] 

 is called a step function if there is a partition                   

such   that for all  , the function    assumes only one value in the interval 

(       ) . 

             If    is a step function, then           is an interval (or) union of 

intervals.  

 ⇒            is open for all real   .  ⇒            is measurable. 

⇒    is measurable. 

      If    is a measurable function and   is the measurable subset of the 

domain  . Then     is  also measurable. 

 

LEMMA:18 

 Let    be a constant and let         be two measurable real valued 

functions defined on the same domain. Then the function                     

           are also measurable. 

Proof: 

    Let   be any real number. 

Now,                                

         Since   is measurable,                 is measurable. 

Therefore, Left hand side is measurable. 

⇒       is measurable. 

      Claim :                    

If       then clearly        ⇒      is measurable. 
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Suppose     . 

Then                 ⁄            

                

             ⁄           

 

Since    is measurable, R.H.S is measurable for all real   . 

⇒ Left h nd side is measurable for all real   ⇒      is measurable. 

i    Claim :                     

 Suppose            .  Then               

 There exist a rational number r such that                

 Therefore                   ⋃             ⋂              

        Since          are measurable functions we have,               and 

               are measurable. Therefore, Right hand side is measurable. 

 Hence                   is measurable. ⇒      is measurable. 

    Since    –          is measurable by (ii) 

           Therefore,            is measurable. 

v  Consider                                               for all  

     

Since    is measurable, we have               is measurable, for all      . 

Therefore,                        .  ⇒     is measurable. 

Now       are measurable  ⇒       is measurable. 

⇒                   re  e sur   e  ⇒                is  measurable.   

⇒  
 

 
[             ]  is   e sur   e  ⇒      is measurable.  
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LEMMA :19 

 Let        be a sequence of measurable function (with the same domain  

Of definition) then the functions  sup                      inf                ,   

  
sup 
n
 f   
inf
n
  f       f         f    re      e sur   e 

 

Proof: 

   Let      sup                           

Now             ⋃             
 
    

Since each    is measurable, R.H.S is measurable. 

Therefore, , 
    
  -                 Therefore, h is  measurable. 

    Define      
   
 
     . 

         Then              ⋃             
 
    

Since    is measurable, and                   . We have, 

   ⋃             
 
                    ⇒                is measurable.  

     ⇒     is measurable.   

 Similarly, we can prove  inf                  and 
   
 
    are measurable. 

     Since       
   
 
 
   
   

    , Therefore,         is measurable. 

Similarly,         is also measurable. 

Definition: 

        A property is said to hold almost everywhere. If the set of points where it 

fails to hold is a set of measure zero. 

 LEMMA 20 

       If   is a measurable function, and     is almost everywhere, then   is 

measurable. 
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Proof:               Let                 

Since     is almost everywhere, we have      

Now , 

                                                    

     Since f is measurable,             is measurable. 

      Since the second and third sets are subsets of E and        

 ⇒ Both the sets h ve  e sure zero and hence they are measurable. 

Since                    , we have              is measurable. 

     ⇒    is measurable.  

 

LEMMA :21 

 Let    be a measurable function defined on [a,b] and assume that     

takes the value      only on a set of measure zero. Then given      we can 

find a step function     and a continuous function    such that         

and          

Proof: 

 To prove this we required following 4  lemmas. 

Lemma:1 

 Given a measurable function f on [a , b] that takes the values     only 

on a set of measure zero and given     there is an integer M such that  

        except on a set of measure less than    ⁄  . 

Proof: 

        Suppose for all M such that                     ⁄  . 

Let                       ⇒      
 
 ⁄               

Also,   ⊃   ⊃   ⊃   and  let   ⋂   
 
    

     ⇒                  ⇒       
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By Theorem 15,         i         
 
 ⁄  .  This  is  a contradiction. 

Therefore given    , there is M such that                         ⁄    

Lemma:2 

 Let f be a measurable function on [a, b], given      and M, there is a  

simple function                              except where            If 

     , then we may take    so that       . 

Proof: 

        Given     , there exists M with             such that 
 

 
   for some n. 

Let        
      

 
      

  

 
  

Define       
  

 
              

Then on                   
  

 
 
      

 
 

                                                    
 

 
              

Therefore,                            [    ]  except where  

            

 If                             

Then by the above construction, there exists a simple function 

                                                           . 

Hence the lemma. 

 

Lemma :3 

 Given a simple function     [    ] , there is a step function g on [a , b] 

such that             except on a set of measure less than   ⁄  . 

Proof: 

          Let    be a simple function and it assumes finite number of values 

                .         Let                  
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Then by, theorem 16 (vi) 

 Since      is measurable, (by definition of simple function) for every     

there is a finite union of intervals                 and 

Vi = U1i ⋃ U2i ⋃…….⋃ Uni   such that  m
*
(Ei ∆ Vi) < 

 

  
 , 1   i   n. 

Define g(x) = ci ,  x  Vi 

If x   Ei  ⋂Vi , then g(x) = φ(x). If g(x)   φ(x), then x   Ei  ∆ Vi , for some i 

Therefore,  { x / g(x)   φ(x)}   ⋃    i    i  
   } 

              m
*
{ x / g(x)   φ(x) }  ∑      i    i  

    

                                                         ∑
 

  
 
    = 

 

 
 

Therefore, g(x) = φ(x), except on a set of measure less than 
 

 
.                   

If   m   φ   M   then we take g so that m   g   M. 

 

Definition: 

     The function  
 
 is defined by  

 
(x) = ,

  if x   
  if x   

   is called the characteristic 

function of E. 

     A linear combination φ(x) = ∑   
 
    

  
(x) is called a simple function if the 

sets Ei are measurable. 

 

Lemma :4 

     Given a step function g on [a,b] there is a continuous function h such that           

g(x) = h(x) except on a set of measurable < 
 

 
.  If m   g   M, then we may take h 

so that m   h   M . 

 

Proof:  

     Given a step function g on [a,b] such that  g(x) = ci , x [xi-1 , xi] for some 

subdivision of [a , b] and   a = x0 ≤ x1≤ x2≤ ……..≤ xn= b. 
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Define   

h(x) = 

{
 
 

 
 

   

                                               *         
 

      
+           

                                   [        ]

     (   
 

      
)                [   

 

      
   ]      

 

 

Then h(x) = g(x), if x  ⋃  [   
 

      
   ]  

   
    

Now, m (⋃  [   
 

      
   ]  

   
    ∑     

    [   
 

      
   ]   

                                                        ∑
 

      

   
    

                                                       = 
 

 
 

Therefore, h(x) = g(x) except on a set of measure less than  
 

 
. 

Main proof: 

     Since f takes the value    only on a set of measure zero, we may assume 

that m   f   M. 

     Given   0, Let f be a measurable function. Then by lemma 2, there exists a 

simple function   with m     M such that |         |  
 

 
. 

     By lemma 3, there exists a step function g with m   g   M on [a,b] such that 

|         |  
 

 
. 

⇒ |         |  |         |   |         | 

                              
 

 
 + 
 

 
   =  

 

 
. 

By lemma 4, there exists a continuous function h with m   h   M such that          

|         |  
 

 
. 

⇒ |         |  |         |   |         |   
 

 
 + 
 

 
   =   . 

Observation: 

   is measurable iff A is measurable . 
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Proof: 

     Let   be any real number . 

     {x /   (x) >  } = {

                
                    
               

     ………….(1) 

⇒ {x /   (x) >  } is measurable for all     

Conversely,     is measurable. ⇒ {x /   (x) >  } is measurable. 

⇒ A is measurable. (by (1)) 

 

1.5 : Little Wood’s 3 principle 

i) Every (measurable) set is nearly a finite union of intervals. 

ii) Every (measurable) function is nearly continuous. 

iii) Every (measurable) convergence sequence of function is nearly 

uniformly convergence. 

The following proposition gives one version of the third principle. 

 

PROPOSITION :22 

      Let E be a measurable set of finite measure and {fn} be a sequence of 

measurable functions defined on E. Let f be a real valued function such that for 

each x in E we have fn(x) converges to f(x).  Then given      and δ     there 

is a measurable set A subset of E with m(A)    and integer N such that   x    

and   n   ,  |          |      

Proof: 

     Let      be given.  Let Gn = {x  / |          |    } 

     Let EN  = ⋃   
∞
    = {x  / |          |     for some n   N} 

Since fn is measurable and fn converges to f point wise. 

We have, f is measurable. 

Since fn , f  are measurable we have, Gn and hence EN are measurable. 

Also we have EN+1⊆ EN 
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Since E1  E and m(E)    we have m(E1)   . 

Then by Theorem 15, we have m(⋂   
 
   ) =  i       . 

By the definition of EN, for all x E , there exists N such that x  EN  as 

                   ⋂   
 
   = φ. 

⇒ 0 = mφ =  i       . 

⇒              there exist N such that       

⇒                                       

Take      then                              

Now ,                                              

                                       . 

 

PROPOSITION :23 

Let  E be a measurable set of finite measure and       be a sequence of 

measurable functions that converge to a real valued function  f  almost 

everywhere on E . Then given     there is a set A subset of E with      

and  an N such that for all      , and  all                           

Proof: 

 Given        pointwise almost everywhere on E. 

⇒  There exists                                              

                                        

By proposition 22,  Given      there exists      and a set            

      and such that every                 ,                . 

                  Let         

                 ⇒                  ⇒            

  ⇒        and                                     
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UNIT-II 

 

Lebesgue Integral 

2.1 The Riemann integral 

Let f  be a bounded real valued function defined  on the interval [a, b] 

and let                 be a subdivision of [a , b]. Then for each 

subdivision we can define the sums   ∑          
 
       and  

  ∑          
 
      , where       

   
[        ]

        and 

     
   
[        ]

       . Then we define upper Riemann integral of f by   

   ∫        inf  
 ̅
 
 

 , where the inf is taken over all possible sub divisions 

of [a,b]. 

    Similarly, we can define lower Riemann integral and  ∫        sup  
 

 
 

The upper integral is always at least as large as the lower integral and 

if the two are equal, we say that f  is Riemann integrable and call this 

common value the Riemann integrable of  f  and we shall denote it by 

 ∫       
 
 
 

   

 By  a step function we mean a function     which has the form  

  x     ,            for some subdivision of [a ,b]  and for some set of 

constant     . Under this definition we have ∫   x dx  ∑            
 
   

 

 
  

with this definition we have,   ∫        inf ∫   x  dx
 

 

 ̅
 
 

  for all step 

functions   x  f x   . 

Similarly,    ∫        
sup

  x  f x ∫   x  dx
 

 

  
 

 

Example:      

                                                              0                 If  x is irrational   

         Show  that if                    1                  if  x is rational 
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Then   f  is not Riemann integrable. 

Soln: 

        Let                    

                   inf          and      sup            [        ]  

This is true for every subdivision of [a , b]. 

  ∑              ∑               
 
   

 
    [          ] 

                                                                          

                                                   

                                                    and    ∑                    
 
    

        ∫        inf       
 ̅
 
 

 and   ∫         sup     
  
 

 

⇒  ∫         ∫       
  
 

 ̅
 
 

  ⇒   is not Riemann integrable. 

 

2.2: The Lebesgue Integral of a bounded function over a set of 

finite measure. 

The function       defined by,      

 

           1         if     

                                0         if      

 

is called the characteristic function of E. 

 A linear combination       ∑   
 
          is called a simple function 

if the sets    are measurable .  

 This representation for    is not unique. However note that the function    

is simple iff it measurable and assumes only finite numbers of values. 
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 If    is a simple function and {              } the set of non-zero values 

of  , then    ∑       where                , this representation of    

is called the Canonical  representation. 

 If   vanishes outside a set of finite measure, we define the integral of   

by, ∫       ∑   
 
       where    has the canonical representation  

   ∫∑       

  Note: 

 Some times we denote it by ∫ . If E is any measurable set then we define  

∫   
 

 
∫     

LEMMA :1 

 Let    ∑   
 
        with          for    . 

Suppose each set     is a measurable set of finite measure , then  

 ∫  ∑   
 
      . 

Proof: 

 Consider                 

                                    ⋃                                                                                            

                                  ∑         

                   ⇒        ∑         

                    ⇒       ∑            

                   ∫       ∑      

 

PROPOSITION:2 

 Let     and    be two simple functions which vanish out side a set of 

finite measure then ∫       ∫   ∫   and if     almost 

everywhere, then  ∫  ∫  . 

Proof: 

Let {Ai}  and  {Bi} be  the  sets  which occur   in  the  canonical representation  

of           
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          Let    and    be the sets where         are zero. Then the set     

obtained by taking all the intersections       from a finite disjoint Collection 

of measurable sets. 

           And we may write    ∑         
 
    and    ∑         

 
   . 

Then by lemma 1,  ∫  ∑        
 
     and  ∫  ∑         

 
    

Now        ∑     
 
             

 Then by lemma 1 ,    ∫        ∑     
 
             

                      ∫        ∑    
 
        ∑   

           

                                             ∑   
  
         ∑   

         . 

  ∫   ∫  

Note that      ∫  ∫  ∫       

          almost everywhere, then       almost everywhere. 

⇒       on  F and       

 Now           
  from a disjoint collection of measurable sets. 

Now by definition, 

           ∫       ∑                
 
    

                     ∑        
 
    where         ,           

              Now            
                 

   

And                     
   are  disjoint. 

Since  m  is  additive,                     
   

Now            ∫  ∫   ∫      

                                       =  ∑   
 
       ∑     [

 
                 

  ] 

                             ∑            
 
   ∑         

   
                              

                             =  ∑           
 
    (as     

               )                                  

           ∫   ∫     ( as                      ) 
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                              ⇒ ∫  ∫  

 

PROPOSITION:3 

 Let f  be defined and bounded on a measurable sets E with      . In 

order that, 
   
   

∫         
   
   ∫       

  

 

  

 
 for all simple function  

         it is necessary and sufficient that f be measurable. 

Proof: 

 Let f be bounded by M. Suppose f is measurable. 

 Let     ,  
  

 
      

      

 
-              

Then       are measurable  and disjoint. 

   ⋃   
 
        ⇒      ∑    

 
         -------------------(1) 

 Define the simple function  

        
 

 
∑      
 
        

                              
 

 
∑           
 
        

⇒                               

⇒  
   
   ∫     ∫     

     = 
 

 
∑          
 
     -------------(2) 

Similarly,     
   
   

∫     ∫      =  
  

 
∑      
 
      --------------------(3) 

From (1) and (2) ,  

⇒     
   
   

∫     
   
   ∫     

   
 

 
∑      
 
     

 

 
∑         
 
      

            
 

 
∑     
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       [      ]  

Since n is arbitrary and mE <  , we have  

⇒   
   
   

∫      
   
   ∫    

  

 

  

 
 

Conversely, 

 Suppose  
   
   

∫       
   
   ∫     

  

 

  

 
 

Given n,  there exist a simple functions            such that 

(i)                   

(ii)  ∫   x  ∫       
 

 
 

Define              

                  sup     

Then               are measurable. 

Also,                        

⇒  sup             inf         

⇒    
 
                

Let                      

              
             

 

 
 

                             
 

 
 

Now Claim that                           
 

 
   

 

 
 

Let                            
 

 
   

⇒               
  

 
   on    

⇒               
  

 
           

⇒   ∫        
 

 
           [∫           ] 
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⇒   ∫   ∫    
 

 
        

⇒      
 

 
  ∫   ∫    

 

 
        

⇒           
 

 
 

Since n is arbitrary,              ⇒     (  )    

As     ⋃   
 
     ⇒         

⇒              except on a set of measure zero. 

⇒              almost everywhere. 

⇒              almost everywhere on E,          

⇒       f is  e sur   e  

  

              

 If   is a bounded  measurable function defined on a measurable set E with 

    . We define the (lebesgue) integral of f over E by, 

∫           ∫                                
 

  

     
  

 

 

Note: 

(i) We write the integral as ∫  
 

 
 . 

(ii) If   [   ] we write  ∫  
  

 
 instead of  ∫  

 

[   ]
 . 

(iii) If f is a bounded measurable function which vanishes outside a set 

E of finite measure, we write  ∫  
 

 
   for  ∫  

 

 
. 

(iv) ∫  
 

 
 is the same as ∫  

 

 
   . 

 

PROPOSITION :4 

 Let  f  be a bounded function defined on [a , b]. If f is Riemann integrable 

on [a ,b], then it is measurable        ∫        ∫       
 
 
 

 

 
 . 

Proof: 

 Since the step function is also a simple function, we have  
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 ∫        
   
   ∫       

 
 

 

 

 
 

  
   
   

∫       
 

 

 

                                                                                ∫       
 
 
 

 

Since f is Riemann integerable we have,     ∫        
   
 

  ∫       
 
 
 

      

⇒          
   
   ∫       

 
 
 

 
   
   

∫       
 

 
 

 ⇒    f  is  measurable (By proposition 3)  

Also from the above relation we have,  ∫        
 

 

   
   

∫       
 

 
 . 

Therefore,  ∫        
 

 
 ∫       
 

 
. 

 

PROPOSITION:5 

 If          are bounded measurable functions defined on a set E of finite 

measure, then 

i. ∫      
 

 = a∫  
 

 + b∫  
 

 

ii. If f = g almost everywhere then ∫  
 

 = ∫  
 

 

iii. If f   g almost everywhere then ∫  
 
  ∫  
 

 and hence |∫  |   ∫| | 

iv. If A   f      B then AmE   ∫   BmE 

v. If A & B are disjoint measurable sets of finite measure then 

∫   
   

= ∫   
 

+ ∫  
 

 

Proof:    Suppose  a   0 

           ∫   
 

 = inf   ∫                    [       f   a    af ] 

                     = a inf   ∫    

           ∫   
 

 = a∫  
 

    ⟶(1) 

           Suppose a   0 

          ∫   
 

 = inf   ∫                     [      f   aϕ   af , (a 0) ] 
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                    = a sup   ∫    

                   = a inf   ∫            ( by proposition 3)  

          ∫   
 

 = a∫  
 

    ⟶(2) 

From (1) & (2),    ∫   
 

 = a∫  
 

     ⟶(3) 

If    and    are simple functions such that  1   f and  2   g. 

Then  1+ 2 is a simple function and   +    f+g 

            ∫    
 

   ∫       
 

                           = ∫    
+ ∫    

 

Now by taking infimum on R.H.S over  1   f and  2   g. 

Then we have ∫    
 

   inf    ∫    
+ inf    ∫    

  

                                      = ∫  
 

 + ∫  
 

   ⟶(4) 

On the other hand, if    and    are simple functions such that 

ϕ1   f   and  ϕ2   g. 

Then ϕ1+ϕ2 is a simple function and   +    f+g 

  ∫    
 

   ∫       
  = ∫    

+ ∫    
 

Now by taking sup on R.H.S over ϕ1   f and ϕ2   g 

Then   ∫    
 

   sup    ∫  + sup    ∫   

                        = ∫  
 

 + ∫  
 

  ⟶(5) 

From (4) & (5), we have ∫    
 

 = ∫  
 

 + ∫  
 

    ⟶(6) 

i)     ∫      
 

 = ∫   
 

 + ∫   
 

      (by (6)) 

                          =  ∫  
 

 +  ∫  
 

      (by (3)) 

ii)    Given f = g almost everywhere 

        ⇒ f - g = 0 almost everywhere 

             f - g ⇒     0 almost everywhere 



40 
 

                         ⇒ ∫  
 

   0     (by proposition 2) 

Taking infimum   we have,   inf     ∫      0 

                           ⇒ ∫    
 

   0  

Similarly,  we can prove ∫    
 

   0 

                ∫    
 

 = 0 

          ⇒ ∫  
 

 - ∫  
 

 = 0     (by (i)) 

                    ⇒∫  
 

 = ∫  
 

 

iii)   Suppose f   g almost everywhere 

                     ⇒ f - g   0 almost everywhere 

ϕ   f - g  ⇒ ϕ   0 almost everywhere    ⇒ ∫  
 

   0 

                 ⇒ sup     ∫      0 

                ⇒ ∫    
 

   0   ⇒ ∫  
 

 - ∫  
 

    0  ⇒ ∫  
 

   ∫  
 

 

Since f   | | and -f   | | 

            ⇒  ∫  
 

   ∫ | |
 

 and  ∫   
 

   ∫ | |
 

 

            ⇒ ∫  
 

   ∫ | |
 

 and -∫  
 

   ∫ | |
 

 

            ⇒ |∫  
 
|   ∫ | |

 
 

iv)   Suppose A   f      B 

            ⇒ ∫  
 

   ∫  
 

   ∫  
 

 

           ⇒ A mE   ∫  
 

   B mE      [  ∫  
 

 = A∫  
 

 = A mE ] 

v)     Suppose A & B are disjoint measurable sets of finite measure 

Now,          = {
          
           

 

Since A & B are disjoint measurable sets, then we have 

                           =       +       
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   ∫  
   

 = ∫       = ∫          = ∫           = ∫   + ∫    

  Therefore,   ∫  
   

 = ∫  
 

+∫  
 

. 

 

PROPOSITON:6 [ Bounded Convergence Theorem ] 

          Let      be a seqence of measurable functions defined on a set E of finite 

measure and  Suppose that there is a real number M such that |     |   M for 

all n, for all x and f    =  i          for all x E then ∫  
 

 =  i      . 

Proof : 

          Given    0, there exists N   0 and a measurable set A   B with mA 
 

  
 

such that for all n   N and  x   E - A, |          |   
 

   
  ⟶(1) (by 

proposition  22  of unit I ) .                                                                                                                       

Now,  |∫    ∫    
| = |∫      

| 

                                   ∫ |    | 
 

                                 = ∫ |    | 
+ ∫ |    |   

 

                                   ∫   
 

+ ∫
 

      
 

                                = 2M mA + 
 

   
 m        2M 

 

  
 + 
 

 
  =  𝜺 

   |∫    ∫    
|   𝜺  for all n   N.   Therefore,    ∫  

 
 =  i    ∫     

Definition: 

                    Let f be a non-negative measurable function defined on a 

measurable set E, we define ∫  
 

 = sup   ∫    , where h is a bounded 

measurable function such that m      ⁄     is finite. 

[ (ie) h vanishes outside a set of finite measure ] 

PROPOSITION:7 

                   A bounded function f on [a,b] is Riemann integrable iff the set of 

points at which f is discontinuous has measure zero. 
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PROPOSITION:8 

             If f and g are non-negative measurable functions then 

i. ∫   
 

 = c∫  
 

 , c  0 

ii. ∫    
 

 = ∫  
 

 + ∫  
 

 

iii. If f   g almost everywhere , then ∫  
 

   ∫  
 

 

Proof:  i)  Let f be a non-negative measurable function and c  0. For every 

bounded measurable function h,  h   f ⇒ ch   cf and      cf ⇒ 
  

 
   f. 

Now    ∫   
 

 = sup    ∫     = sup  
 
  
 ∫
  

  
 

                    = sup    ∫     = c sup   ∫     = c∫  
 

  

     ii)  Let h and k be bounded measurable functions vanishing outside the set of 

finite measure. 

        h   f, k   g ⇒ h+k   f+g   ⇒ ∫    
 

   ∫    
 

 

                  ⇒ ∫  
 

 + ∫  
 
  ∫    
 

 

Taking supremum on L.H.S over h   f and k   g then 

                     ⇒ sup   ∫    + sup   ∫      ∫    
 

 

                    ⇒ ∫  
 

 + ∫  
 
  ∫    
 

     ⟶(1) 

Let   be a bounded measurable functions which vanishes outside a set of finite 

measure and     f + g.  Define h = min      and k    =      - h    

Therefore, k =   - h is defined at all points of its domain. ( since l is bounded, h 

is bounded ) 

By definition,  h      f    and also,         f    + g    

⇒ h    + k    =        f    + g    

   Therefore, 0   k      g             [as h = min (f,  )] 

  Moreover, h, k        ⇒ h, k are bounded measurable functions and they vanish 

outside the set of finite measure. 

        h   f and k   g 



43 
 

     ⇒ ∫  
 

 = ∫      
 

 

     ⇒ ∫  
 

 = ∫  
 

 + ∫  
 

 

     ⇒ ∫  
 

   ∫  
 

 + ∫  
 

 

Taking supremum on    f + g,   ⇒ ∫    
 

   ∫  
 

 + ∫  
 

    ⟶(2) 

  From (1) &(2) 

                  ∫    
 

   ∫  
 

 + ∫  
 

   

iii)   Suppose f   g almost everywhere 

 Let h be a bounded measurable function which vanishes outside the set of finite 

measure and h   f - g 

       ⇒ h   0 almost everywhere    [  f   g a.e  ⇒ h = f - g   0 a.e] 

       ⇒ ∫  
 

   0 

By taking supremum we have,  sup     ∫      0 

         ⇒ ∫    
 

   0 

Assume ∫  
 
   .         [  suppose ∫  

 
 =  , then ∫  

 
   ∫  
 

 ] 

Adding ∫  
 

 on both sides,          

        ⇒ ∫    
 

 + ∫  
 

   ∫  
 

 

        ⇒ ∫        
 

   ∫  
 

 

        ⇒ ∫  
 

   ∫  
 

 

 

THEOREM:9. [ Fatou’s Lemma] 

         If {fn} is a sequence of non-negative measurable functions and fn(x)  f(x) 

almost everywhere on a set E, then ∫  
 

 
   lim ∫   

 

 
. 

Proof: 

         Without loss of generality we may assume that, the convergence is 

everywhere, since the integrals over the sets of measure zero are zero. 
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          Let h be a bounded measurable function which is not greater than f and 

which vanishes outside a set Eʹ of finite measure. 

           Define a function hn = min{h(x), fn(x)} 

           Then hn is bounded by the bound for h and vanishes outside Eʹ. 

    And also hn (x) h(x). Then by proposition 6 (Bounded convergence theorem),  

        we have  ∫  
 

 
 ∫  
 

  
       ∫   

 

  
 

                                                 ∫   
 

  
 

Now taking sup, we have   
   
   ∫  

 

 
    ∫   

 

 
       ∫  

 

 
    ∫   

 

 
 . 

 

THEOREM : 10.[ Monotone Convergence Theorem] 

      Let {fn} be an increasing sequence of non-negative measurable functions and 

let             almost everywhere then    ∫      ∫   
 

 

 

  . 

Proof: 

       By Fatou’s Lemma we have,    ∫      ∫   
 

 

 

  .                                 (1) 

But for each m we have,        and also  ∫    ∫    
 

 

  

 
 

          ⇒      ∫     ∫   
 

 

  

  .                             (2) 

From (1) & (2) ∫      ∫   
 

 

 

 
     ∫    ∫  

 

  

 

 
 

⇒    ∫       ∫   
 

 

 

 
 ∫  
 

 
 

 ⇒    ∫   
 

 
 ∫  
 

 
. 

COROLLARY : 11 

Let {un} be a sequence of non-negative measurable functions and let f = ∑ u 
   n.  

Then ∫    ∑ ∫  
 
    . 

Proof:    

        ∑   
 
   .   Let       ∑   
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Since,                     is an increasing sequence of non-negative 

measurable functions and        

By Monotone Convergence theorem,  ∫              

                                                                     =  i   ∞  ∑ u 
   k 

                                                                     =  i 
  ∞
∑  u 
   k  = ∑  u 

   k 

PROPOSITION :12 

Let f  be a non-negative function and {Ei} a disjoint sequence of 

measurable sets. Let   ⋃  . Then ∫ f  ∑∫ f
 

  

 

 
 

Proof: 

           Let          

Since, {Ei} are disjoint sequence of measurable sets and E=⋃   
   i ,we have 

    = ∑    
 
      ⇒        ∑     

 
      =  ∑ u 

   i 

By corollary 11, ∫     ∑ ∫  
 
    

                           ∫     ∑ ∫    
 
    

                   ∫  
 

 
   ∑  ∫  

 

  

 
     

Definition : 

A non-negative measurable function f is called integrable over the 

measurable set E if ∫ f
 

 
     

PROPOSITION:13. 

Let f and g be two non-negative measurable functions. If f is integrable 

over E and  g(x) < f(x) on E.  Then g is also integrable on E and 

 ∫     ∫   
 

 

 

 
∫  
 

 
. 

Proof: 

                  ∫  
 

 
 ∫  
 

 
                                

                           ∫  
 

 
   ∫  

 

 
       ⟶  (1)   [        ]                                                                         

Since f integrable,  ∫  
 

 
     ⇒ ∫  

 

 
   ∫  

 

 
    ⇒ ∫  
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⇒ g is integrable. 

(1)  ⇒ ∫   
 

 
    ∫  

 

 
 ∫  
 

 
          [    ∫  

 

 
  ]  

                                                         

PROSITION:14 

Let f be a non-negative function which is integrable over a set E.  Then 

given   > 0, there exists a   > 0 such that for every set A subset of E with 

 mA <  δ we have ∫     
 

 
 

Proof: 

Case (i):  

Suppose f is bounded.  Let     be given.        

If  A   E such that mA< δ then  ∣ ∫  ∣   
 

 
∫ ∣  ∣
 

 
 

                                                                 ≤  ∫  
 

 
 = M . m(A) < M . δ = ε                                                   

                                                        ⇒ ∣ ∫  ∣    
 

 
 

Case(ii): 

Given f, Define   = min {f , n} 

⇒    ≤  n ⇒   each    is bounded and  i               

Also {  } is an increasing sequence of measurable functions. 

 By Monotone Convergence Theorem, we have   ∫  =   i    ∫   

Let     be given, there exists N such that ∫   >∫ - 
 

 
 

Now, ∫      =∫  ∫   < 
 

 
.   Let δ = 

 

  
 . 

If mA < δ then ∫   
 

 
= ∫       
 

 
     

                                   = ∫     
 

 
 ∫   
 

 
  

                                   = 
    

 
 + N mA       [     min(f, N)] 

                          ∫     
 

 
<   
 

 
 + N δ = 

 

 
 + N  

 

  
 = ε 
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                            ⇒ ∫     
 

 
 

 

Theorem: 15 

         Let {    be a sequence of non-negative measurable functions which 

converges to f and suppose       for all n then   ∫  =  i    ∫   

Proof: 

 Let    i    ∫     

 By Fatou’s lemma,  ∫     ∫  -----------(1) 

Since       we have ∫    ∫ ,  for all n.  

⇒   ∫    ∫   ------------(2) 

From (1) and (2),      ∫    ∫       ∫   

But            ∫       ∫   

        ⇒       ∫       ∫    ∫                                             

        ⇒         ∫   exists and      ∫   ∫  

 

Example : 

The Monotone Convergence theorem need not hold for decreasing sequence of 

  . 

Soln:  Consider the function            [   ]                                             

Then ∫  = ∫ [   ]     = m [     =  , for all n. 

      Also     is decreasing to zero function and so f = 0 =  i          

      ⇒∫ =0.  But ∫ ≠ lim ∫  . 

 

2.3  General Lebesgue Integral 

Definition: 

       By the positive part    of a function f,  we mean the function   = f v o 
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         (ie)      = max {f(x), 0} 

Similarly, we define the negative part    by   = - f v o 

         (ie)      = max {-f(x), 0} or     = - min {f(x), 0} 

If f is measurable  and so   and   are measurable. 

We have          and ∣  ∣      . 

 

Definition: 

                 A measurable function    is said to  be integrable over E if    and    

are both integrable over E and we define ∫  ∫    ∫   . 

 

PROPOSITION:16 

            Let f and g be integrable over E, then  

(i) the function cf is integrable over E and ∫   
 

 
  ∫  

 

 
  

(ii) the function f+g is integrable over E and ∫    
 

 
 ∫  
 

 
 ∫  
 

 
 

(iii) If  f ≤ g is a.e , then ∫  
 

 
  ∫  

 

 
 

(iv) If A and B are disjoint measurable sets contained in E, then      

∫  
 

 ⋃ 
  ∫  

 

 
 ∫  
 

 
 

Proof: 

(i) Suppose c ≥ 0 

          Then, cf = c         

                         =         

    and            are non-negative integrable functions. 

                   ⇒ cf is integrable, when c ≥ 0 

                          ∫   
 

 
 ∫    
 

 
     

                                   = ∫    
 

 
 ∫    
 

 
   [By Definition] 

                                   =  ∫   
 

 
  ∫   
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                                   =  [∫   
 

 
 ∫   
 

 
] 

                         ∫   
 

 
  =   ∫  

 

 
 

Suppose  c < 0,  Let c = -d, d>0 

    Now, cf = (-d)f 

               cf = (-d) (     ) = - d       =    - d   

and d           are non-negative integrable functions over E. 

⇒ cf is integrable, when c < 0 

                 ∫   
 

 
 ∫    
 

 
     

                          ∫    
 

 
 ∫    
 

 
  (by definition) 

                           ∫   
 

 
  ∫   

 

 
 

                           [∫   
 

 
 ∫   
 

 
] 

                            [∫   
 

 
 ∫   
 

 
] 

                           [∫   
 

 
 ∫   
 

 
] 

                ∫   
 

 
  ∫  

 

 
 

(ii) Let         where           are non-negative integrable functions. 

             ⇒              

             ⇒             
  

           ⇒   ∫       ∫    
  

          ∫   ∫   ∫   ∫ 
   (by proposition 8) 

    ⇒   ∫    ∫   ∫   ∫   

                  ⇒    ∫   ∫   ∫    --------------(1) 

Now  Suppose f and g are integrable, and   

                                

                                            

Also             are non-negative integrable functons over E. 
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     By (1), ∫    
 

 
 ∫        
 

 
 ∫        
 

 
 

                                 ∫   
  

 
 ∫   
 

 
 ∫   
 

 
 ∫   
 

 
 

                                 ∫   
 

 
 ∫   
 

 
 ∫   
 

 
 ∫   
 

 
 

                  ∫    
 

 
 ∫  
 

 
 ∫  
 

 
 

(iii) Let   A = { x/ g(x) =  , B = { x/ f(x) =    

⇒    B ⊆     (as   f  ≤  g) 

On E-A, g - f is well-defined, finite and g - f  ≥  0 almost everywhere      

[as  f and g are integrable] 

Also mA=0,  ∫  
 

 
 ∫  
 

 
 ∫  
 

   
 

 

                              =  ∫  
 

   
 ∫  
 

   
       

 

                              = ∫  
 

   
 ∫    
 

   
              

 

By proposition 8,  ∫    
 

     
        [  g-f  ≥ 0 a.e on E-A] 

 

⇒∫  
 

 
 ∫  
 

   
 ∫  
 

   
 ∫  
 

 
        [  mA=0 ] 

 

                            = ∫  
 

 
 

                              ⇒     ∫  
 

 
  ≥   ∫  

 

 
   

iv)                    ∫  
 

   
  = ∫       = ∫       )  = ∫   + f    

                                    = ∫    +∫    = ∫  
 

 
 + ∫  
 

 
. 

Dominated convergence theorem  (or)  Lebesgue convergence theorem 

THEOREM:17 

        Let g be integrable over E and Let      be a sequence of measurable  

functions  such  that  |  |   g  on  E  and  for  almost  all  x on E, we  have 

  f(x) =  i      (x). Then  ∫   
 

 
=  i    ∫   

 

 
 . 

Proof: 
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               Since  g   is  integrable ,      is  measurable   and   |  |     We  have  

each     is   integrable.         

Therefore,  m   |                  

So ignoring set of measure zero, we can assume  |     |    for all  x   E. 

  Consider   g    ,  Now    |  |          ⇒   g        

Also     f =  i       ⇒   i               

By  Fatou’s  lemma  ,   ∫       ∫        

                            ⇒   ∫  ∫  ∫     ̅̅̅̅̅ ∫    

                           ⇒    ∫     ̅̅̅̅̅ ∫   ⟶          [  ∫    ] 

Also     |  |     ⇒     g         

                            ⇒   g +            and   i           + f 

 

By  Fatou’s  lemma  ,   ∫       ∫       

                              ⇒  ∫  ∫  ∫     ∫   

                               ⇒  ∫     ∫  ⟶       [  ∫   ] 

From     and    ,  

            ∫     ∫      ∫   ∫  

           ⇒      ∫      ∫   ∫ . 

           ⇒    i  ∫    exists and  i  ∫   ∫ . 

 

PROPOSITION:18 [Generalization of Lebesgue convergenceTheorem] 

            Let         be  a  sequence  of  integrable  functions  which   converges  

almost  everwhere  to  an  integrable  function  g.  Let        be  a  sequence  of  

measurable  functions  such that  |  |      and       →f  almost  everwhere  if  

∫   i  ∫     then   ∫   i  ∫  . 

Proof: 
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               Let            almost everwhere. 

Let    D = { x /        does  not  converges  to  g(x) }. Then m D = 0 

⇒   ∫     
 

 
 ,       and   ∫    

 

 
 

So  we  can  assume  that              , for all  x   E. 

Similarly, we  can  assume  that               for  all  x   . 

  Since    is measurable,    is measurable and  |  |      

⇒  each      is  integrable  as  each       is  integrable. 

Consider                              

  and   i            = g – f ,  ignoring   a  set  of  measure  zero. 

By Fatou’s lemma ,   ∫        ∫       

                          ⇒  ∫  ∫       ∫      ∫    

                            ⇒  ∫  ∫   ∫     ∫         [   i  ∫   ∫ ] 

                           ⇒  ∫     ∫               [ ∫   ] 

Similarly, we can prove    ∫     ∫  .    ∫   i  ∫  . 

 

PROPOSITION:19 

    A  measurable         is  integrable  over  E  iff  | | is integrable. 

Proof: 

        Suppose f is integrable over E and  f  =         

⇒             are integrable (by definition) over  E. 

          ∫       and    ∫     

Now  ,           | |         

               ⇒  ∫| |  ∫   ∫     

              ⇒    ∫| |       ⇒    | |   is   integrable. 

Conversely ,  
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            Suppose | | is integrable over E. 

To Prove:  f  is integrable. 

  Given f is measurable.     ⇒      are    are measurable  

Also    | | =       

Now       | |      and        | | 

  ⇒   ∫   ∫| |    and  ∫   ∫| |        

  ⇒       and     are  integrable    ⇒    f is integrable. 

PROPOSITION:20 

     If f is integrable over E, then  |∫  |  ∫| |  . 

Proof: 

            Since   f   | |    and   f   | | 

             ⇒    ∫   ∫| |   and    ∫  ∫| | 

              ⇒   ∫     ∫| |     

            ⇒   ∫     ∫  ∫               

               ⇒   ∫    ∫     . 

Example:  

 Prove that the function  
    

 
  is not lebesgue integrable over [     . 

Soln : 

 We know that the measurable function f is integrable iff       is 

integrable. 

Now, consider the integral, 

                   ∫  
      

 

  

 
      ∑   

   ∫  
      

 

  

      
    

                                                   ∑   
   ∫  

                

          

 

 
     

                     [                          
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                               ] 

                                                  ∑   
   ∫  

                

  

 

 
    

                                                                    [                   ] 

                                                  ∑  
 

  
   

   ∫  sin            
 

 
    

                                                 ∑  
 

  
   

      ∫   sin  
 

 
        

                                                 ∑  
 

  
   

      ∫ sin  
 

 
      

                                                 ∑  
 

  
   

   [–  os ] 
 
 

 

                                                 ∑  
 

  
   

   [–  os   os  ]  ∑
 

  

 
    

 

 
∑   
   

 

 
                             

                                                  i    ∫  
    

 

 

 
    

                                                  i    
 

 
∑  

 

 
   

     
 

 
∑   
   

 

 
                                

                  ∫  
      

 

  

 
     .                    
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UNIT III 

COMPLEX ANALYSIS 

3.1 Complex Numbers 

Algebra  of complex numbers: 

 

Definition: 

     A complex number is an ordered pair of numbers C = {(a,b) / a,b ϵ R} 

Notation: 

The complex number (a, b) is written as a + ib where I =     

REMARK: 

The set  C= {(a,b) /a,b ϵ R }is a field under the operation of 

addition and multiplication defined by 

i)  (a ,b) + (c,d) = (a+c, b+d) 

ii) (a,b) * (c,d) = (ac-bd ,ad+bc) 

Conjugation and absolute value   

The transformation states z = x+iy to  ̅ = x-iy is called complex 

conjugation. 

NOTE: 

1) A number  is real iff it is equal to its conjugate . 

2) Conjugation is involuntary (i.e)   ̿ =z 

3).Re(z) = x =  
             

 
 
   ̅

 
 

4).Im(z) = y = 
             

  
   
   ̅

  
 

5)  i)        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =    ̅̅̅̅ +   ̅ 

         ii)       ̅̅ ̅̅ ̅̅ =   ̅̅̅̅   ̅ 

6) z  ̅= (x+iy)(x-iy) = x
2 
+ y

2
 

7)    ̅ is called the modules or the absolute value of z and it is     

    denoted by │z│,│z│
2
= z ̅= x

2
+y

2
. 

8)  i) │z1z2│= │z1││z2│ 

          ii)  │z│= │ ̅│ 

9)  │z1+z2│  │z1│+│z2│ 

      │z1+z2│
2 
= ( z1+z2)(  ̅+  ̅) = z1  ̅ + z1  ̅ + z2  ̅ + z2  ̅ 

         = │z1│
2
+│z2│

2
 +2Re (z1  ̅) 

                       │z1│
2
+│ z2│

2
 +2│z1  ̅│ 

                       =│z1│
2
+│ z2│

2
 +2│z1││ z2│ 
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               │z1+ z2│
2   (│z1+ z2│)

2 

               │z1+ z2│ │z1│+│ z2│ 

10) │z1+ z2│
2
 +│z1   z2│

2
 = 2│z1│

2
+ │z2│

2
 

               │z1+ z2│
2
 +│z1 - z2│

2
 = (z1+ z2)(  ̅+  ̅)+ (z1 z2))(  ̅    ̅) 

                   = │z1│
2
+│ z2│

2
 +2Re (z1  ̅) + │z1│

2
+│ z2│

2
 -  2Re (z1  ̅) 

│z1+ z2│
2
 +│z1 - z2│

2 
 = 2│z1│

2
+2│ z2│

2
  

        
 

NOTE: 

By induction hypothesis 

         i) │z1+ z2+……..+zn│ │z1│+│z2│+…..+│zn│ 

        ii)  -│z│        │z│ 

       iii) -│z│         │z│ 

 

SQUARE ROOT 

 

Let √                                 

      (x+iy)
2 
= x

2 y
2 
+ 2ixy

 

Equating real and imaginary parts 

  x
2 y

2
 ……………….(1)   

      

We have to solve  for x and y 

(x
2
+y

2
)

2
 =(x

2
-y

2
)

2
 +4 x

2
 y

2 

    = 2
+ 2 

 x
2
+y

2
 =√      -----------(2) 

 

(1) + (2) gives   2x
2
=α+√           and  2y

2
=-α+ √               

                            ⇒        √
  √     

 
     and   y = √

   √     

 
                                                                                                                                                       

          The signs of x and y are so chosen that 2xy = β is satisfied                     

          √      = x + iy 

                            = ±  √
  √     

 
  
 

| |
 √
   √     

 
  , provided β 0 
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If β = 0 then square root is    if α    0 

Modulus – Amplitude form of a complex number: 

             P(r, )       

        r         y                              

           x                                                  

      Fig. 3.1              

 

Any complex number can be written of  the form z=r ( cos Ɵ + i sin Ɵ),                                                     

 where Ɵ = amp z = arg z  and r = |z|. Then we have   x=r cos Ɵ and   

               y = r sin Ɵ and  r = |z|  and  Ɵ=tan
-1

(y/x) .                                                                                                                                                                    

   

 PROBLEM :    1.  Show that the area of the triangle with vertices z1, z2, z3  is 

given by   ∑
|  |
          

    
. 

 

The area of the   ABC = ½∑x1 (y2-y3)                                                                              

                                      = 
 

 
 |

     
     
     

| 

                                       =  
 

  
|

      
      
      

|          

                                     = 
 

  
  |

          
          
          

|          

                                     =
 

  
 |
|

  
       ̅̅ ̅ 

  
 

  
       ̅̅ ̅ 

  
 

  
       ̅̅ ̅

  
 

|
|               
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                                     = 
 

  
     |

        ̅  
        ̅  
        ̅  

| 

                                     = 
 

  
     |

     
     
     

|   +   
 

  
     |

     ̅  
     ̅  
     ̅  

| 

                                    = 
 

  
     |

     ̅  
     ̅  
     ̅  

|  = 
 

  
     |

  ̅    
  ̅    
  ̅    

| 

                                    = 
 

  
 ∑  ̅              

Problem 2: Show that the equation of the circle with centre α (complex) and 

radius r is  zz  - αz  -α   z +|α|
2 –

r
2 
=0. 

Solution:  Let C be the centre and P(z) be any point on a circle then 

                                CP=r  ⇒|z-α|=r   ⇒|z-α|
2
=r

2   ⇒   (   )(   ̅̅ ̅̅ ̅̅ ̅)=r
2 

                                 ⇒     zz  - zα  - αz  + αα   = r
2 ⇒   zz  - αz  - α  z + |α|

2 
- r

2 
= 0 

Problem 3:  Prove  (i)  |
   

   ̅ 
| = 1  if either |a|=1 or |b|=1. when will be the 

equation true if  |a|=|b|=1 ?.  (ii) If |a|<1 and |b|<1 then prove that   |
   

     
|   < 1     

Solution:  (i)             Consider                |a| = 1  ⇒  aa  =1  

               Let     w     =  
   

     
    

                         w      =     
   

  ̅  ̅ 
  =  

   

 ̅     
     = 

 

 ̅
   ⇒ w        = 1 a 

                          ww       =    (1 a) (1 a ) =   
 

   
   =  

 

| | 
  =1 

                         |w|
2
      =     1  ⇒    |w|       =      1  
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                    |
   

     
|      =      1 

Similarly, when |b|=1 we can prove that |w|=1. 

                     |
   

     
|    =    1 if either |a| = 1 or |b| = 1 

Let     |a|= |b|=1   

Now           |
   

     
|        =  |

   

       
|   =  

|   |

| ̅||   |
 

                    Therefore,  |
   

     
| = 1 is true only if a b 

But we have |a| = 1 = |b| and hence the equation is true only when arg a   arg b 

(ii) Given |a| < 1 and |b| < 1. 

To Prove    |a-b| < |1-a b| (ie)  T.P    |a-b|
2  

< | 1-a  b|
2
 (ie)  T.P  |a-b|

2 
–  |1-a  b|

2 
<0 

Consider      |a-b|
2 
–  |1-a  b|

2 
= (a-b)(a  -b ) – (1-a  b)(1-a b ) 

                      = aa  –  ab  –  ba  + bb  –  1 +  a b + ab  - aa bb  = |a|
2 
– 1 + |b|

2 
- |a|

2
|b|

2
 

                      = ( |a|
2
-1) - |b|

2
( |a|

2
-1)  = ( |a|

2
-1) (1- |b|

2
)  < 0 

               Hence      |
   

     
|  < 1. 

Cauchy’s  Inequality:                                                          

Let ai ,bi (i = 1, 2,.............,n)  be complex numbers  

|∑   
 
     |

2
     (∑  |  | 

 
   

2
) (∑  |  | 
 
   

2
 ) 

 Proof:    Let λ be any complex number and we assume that not all bi’s are zero              

[If all bi’s are zero, then the given in equation  is clearly true. 

            Consider   ∑ (|      ̅|
 )

 

   
   0 
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         (ie) ∑ |  |
 
   

 
+|λ|

2
 ∑ |  |
 
   

 
- 2Re  ̅  ∑       

 
     0 

This is true for any complex number   and for any λ =  
∑       
 
   

∑ |  |
  

   

  

 Hence we get   

∑ |  |
 
   

 
+   
| ∑   
 
     |

 

(∑ |  |
  

   )
   ∑  |  | 
 
   

2
 - 2Re  

| ∑   
 
     |

 

∑ |  |
  

   

                            

   

∑ |  |
 
   

 
+   
| ∑       
 
   |  

∑ |  |
  

   

   - 2  
| ∑       
 
   |  

∑ |  |
  

   

  0    

∑ |  |
 
   

 
-  
| ∑       
 
   |  

∑ |  |
  

   

          

 | ∑     |
 
   

 
       ∑ |  |

 
   

 ∑ |  |
 
   

 
   

 Lagrange’s Identity 

| ∑     |
 
   

 
  ∑ |  |
 
   

 ∑ |  |
 
   

 
 - ∑ |           |

 
    

where a1, a2... an and b1, b2.... bn are arbitrary complex numbers.  Deduce the 

Cauchy’s Inequality. 

Proof: 

  ∑ |  |
 
   

 ∑ |  |
 
   

 
  

=(a1a 1+ a2a 2 +............+ ana n )( b1b 1+ b2b 2 +............+ bnb n) 

 = a1a 1b1b 1 + a2a 2 b2b 2 +..............+ ana nbnb n + a1a 1 b2b 2+  a1a 1 b3b 3+..........+ 

a1a 1 bnb n + a2a 2  b3b 3+ a2a 2 b4b 4 +.............+ a2a 2  bnb n+..............+ an-1a n-1 bnb n+ 

b1b 1 a2 a 2 + ..........+ b1b 1 ana n + b2b 2 a3a 3+........+ b2b 2 ana n+............+ bn-1b n-1 a1a 1                                                                                   

      = | ∑     |
 
   

 
   + ∑ |     |

 
        + ∑ |      |

 
           ……..(1) 
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We know that |a-b|
2 
 = |a|

2 
 + |b|

2
 -2 Re (ab ) 

 ∑ |    ̅      ̅|
 

       = ∑ |    ̅|
 

    + ∑ |    ̅ |
 

        e  ∑     ̅   ̅   ----(2) 

(1) - (2)  

∑ |  |
 
   

 ∑ |  |
 
   

 
   ∑ |    ̅      ̅|

 
    

             = ∑ |    |
 
   

 
+ ∑ |    ̅|

 
    + ∑ |    ̅ |

 
    - ∑ |    ̅|

     -  ∑ |    ̅ |
 

         

                   +2Re ∑     ̅   ̅       

              = | ∑     |
 
   

 
 +  Re ∑            ̅     ……………..(3)          

Now,   | ∑     |
 
   

 
  = (a1b1+ a2b2+.........+ anbn) + (a 1b 1+ a 2b 2+ .............+ a nb n) 

                             = a1b1 a 1b 1 + a2b2 a 2b 2+............+ anbn a nb n+ a1b1 a 2b 2+ a1b1   

                                 a 3b 3+.......+ a1b1 a nb n +.................+  an-1bn-1 a nb n +  a 1b 1                        

 a2b2+........+ a 1b 1 anbn+ a 2b 2 a3b3+.........+ a 2b 2 anbn+ …. 

 + a n-1b n-1 anbn 

                              = | ∑     |
 
   

 
+∑               +  ∑          ̅         

                              =  | ∑     |
 
   

 
+2Re ∑              ……….(4) 

From (3) and (4) 

| ∑     |
 
   

 
= ∑ |  |
 
   

 ∑ |  |
 
   

 
 - ∑ |           |

 
        

Deduction: 

    Since ∑ |           |
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                 -∑ |           |
 

          

(ie)   | ∑     |
 
   

 
   ∑ |  |

 
   

 ∑ |  |
 
   

 
, which is the required Cauchy 

inequality. 

NOTE: 

      The equation of a straight line can be written as z = a+bt, where t is real. 

     ⇒   
       

  
   = t = real  ⇒Im  

       

  
  = 0.   If   Im   

       

  
     0 then it is right half 

plane and if Im  
       

  
  >    then it is left half plane. 

Spherical Representation 

         The system C of complex numbers can be extended by introducing the 

symbol  .  Now its connection with finite numbers is given by               

a+  =  +a =       finite a and   b.   =  .b =     b    including b =  . 

   Further,         and 0.   are not defined  

             
 

 
 =     a  0   ,    

 

 
 = 0   b   . We call   as the point at  . 

   Extended complex plane 

    The points in the plane together with the point at   form the extended 

complex plane. 

     1. Every straight line shall pass through the at   (Ideal point) 

     2. No half plane shall contain the ideal point. 

                                        Stereographic projection 

      It is a geometric model in which all points of the extended plane we have 

a concrete representation. 
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      Consider the unit sphere S whose equation  is x1
2
+ x2

2
+ x3

2
=1 with every 

point on S except (0, 0, 1) we can associate a complex number   z = 
      

      
 and 

this correspondence is 1-1. 

 

 

 

 

 

 

 

 

 

 

Now, |z|
2
 =  
  
    

 

      
 
   =  

    
 

      
 
      [as  x1

2
+x2

2
+ x3

2
 =1] 

                                 =  
    

    
   ⇒ x3 = 

| |   

| |   
                                                     

Similarly,   x1 =  
     ̅

| |   
     and     x2 =   

     ̅

  | |    
          

        The correspondence can be completed by letting the point at    

corresponds to (0, 0, 1).  

       We can regard the sphere as a representation of the extended plane or of the 

extended number system. 

N 

z 

Z 

O 

Z 

z 

FIG. 3.2   Stereographic projection. 
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     Note that the hemisphere x3 < 0 corresponds to the disc |z| < 1 and the 

hemisphere x3 > 0 corresponds to its outside |z| < 1. 

     In function theory the sphere ‘S’ is referred as the Riemann sphere. 

     If the complex plane is identified with (x1 , x2)  plane  with x1 axis and x2 axis 

corresponding to real and Imaginary axis respectively  then the transformation       

z = 

      

    
   takes on a simple geometrical meaning. Now writing z = x + iy 

     We have  x + iy   =
      

    
  

   Equating real and Imaginary part 

       x = 
  

    
      ,    y =  

  

    
 

      
 

  
    

 

  
     

  

      
       (or)    x : y : -1= x1 : x2 : x3 - 1 

The points (x, y, 0), (x1, x2,   ) and (0, 0, 1) are in a straight line.    

     Hence the correspondence is a central projection from the center (0, 0, 1).  It 

is called a stereographic projection.  It is geometrically evident that 

stereographic projection transforms every straight line in the z-plane into the 

circle on S which passes through the pole (0, 0,1) and the converse is also. 

     More generally, any circle on the sphere corresponds to circle or the straight 

line z-plane. To prove this we observe that a circle on the sphere lies in a plane      

α1x1+ α2x2+ α3x3 = α0 and α1
2
+ α2

2
+ α3

2 
= 1 and 0 ≤ α0 < 1 

  α1   
   ̅

| |   
   +  α2    

   ̅

  | |    
  + α3  

| |   

| |   
    =  α0 

  α1( z + z ) - iα2(  z - z  ) + α3(|z|
2 
- 1) = α0(1 + |z|

2
) 

  α12x -iα2(2iy) + (α3 – α0) |z|
2
 = α0 + α3 

  (x
2 
+ y

2
)(α3 - α0) + 2 α1x + 2 α2y - (α0 +  α3) = 0 
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For α0   α3 ,  this is the equation of the circle. 

For α0   α3, it represents as a straight line. 

Conversely, the equation of any circle or straight line can be written in this form. 

This correspondence is consequently one to one. 

To calculate the distance d(z,z′) between the stereographic projection of z and z′. 

          The points on the sphere are denoted by (x1, x2, x3) and (x1′, x2′, x3′)  

d(z,z′) =√ x  x 
     x  x 

     x  x 
    

= √    x x 
  x x 

  x x 
   

Consider, 

x1 x1′+x2 x ′+x3 x3′ =  
    ̅      ̅       ̅      ̅    | |     |  |

 
   

   | |      |  |  
   

                       = 
       ̅  ̅   ̅ ̅        ̅   ̅    ̅ ̅   | |      |  |    

   | |      |  |  
 

                       = 
     ̅   ̅    | | |  |  | |  |  |

 
  

   | |      |  |  
 

                        

   
 | |    (   |  |

 
) | | |  |

 
 | |  |  |

 
        ̅   ̅    | | |  |

 
 | |  |  |

 
   

   | |      |  |  
 

                      =  1 -  
   | |  |  |

 
    ̅   ̅    

   | |     |  |  
 

                     =1 -  
 |    | 

   | |      |  |  
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 d(z,z′) =√   (  
  |    | 

   | |     |  |  
)    =√

  |    | 

   | |      |  |  
 =  

  |    |

√   | |     |  |  
 

For   z′ =   the corresponding formula is  

d(z, ) = √ x    
   x    

   x    
  

                     =√ x 
  x 

  x 
      x  =√   x    =√    x   

                     =   √  
 | |    

   | |  
   =    √  

   | |    

  | | 
 

                     =   √  (  
 

  | | 
)  =   √

 

  | | 
  =  

 

√  | | 
   

Problem 1  Show that   z and  z′ corresponds to diametrically opposite points to 

Riemann’s sphere  iff  z   ̅̅̅ = -1. 

Solution:    Let the diametrically opposite points be (         nd             

                         z =  
     

   
   ;    z′ =  

     

   
 

zz̅  = 
    

   

       

     
       = 

      

    
       = 

    

    
  = -1  [  s           ]      

Conversely,                   zz̅ = -1 

                      Let  z = 
    

   
 . Since  zz̅′= -1 ,       (

    

   
 z̅′= -1 

                                 z̅′ = 
      

     
  ,z′ = 

      

    
  = 
      

      

      

      
   =  

            

     
 

                                 = 
            

    
  = 
            

          
 

                              z′ = 
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Therefore   z = ( ,      then  z′ = (-         

Therefore , z and z′ are diametrically opposite points. 

3.2 Analytic   Functions 

Introduction to the concept of analytic  function 

There are four different types of functions 

1. Real function of a complex variable 

2. Complex function of a real variable 

3. Real functions of a real variable 

4. Complex functions of a complex variable 

Notation: 

W = f(z) is to denote complex function of a complex variable for the 

remaining three functions, we use y = f(x), where x and y be real or complex. If 

a variable is definitely restricted by real values, then we denote it by t. All 

functions must be defined and consequently single valued. 

Limit and  Continuity: 

Definition : 

The function f(x) is said to have the limit  A as x tends to a.  

 i             (1) if and only if  the following is true 

For every       ,there exists a number         with the property that 

 |f(x)-A| ˂    for all values of  x such that |x-a|  ˂    and x ≠ a. 

Form eqn (1),  i        ̅̅ ̅̅ ̅̅  =  ̅       

From (1) and (2),  i     e(f(x)) = Re(A)      
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Similarly,       i     m(f(x)) =Im(A)    ) 

Conversely,  (1) is a consequence of equation (3a) and (3b). 

Definition: 

The function f(x) said to be continuous  at  x=a  iff   i    f(x)=f(a). 

f is continuous  iff  f  is continuous at all points where it is defined. The sum and 

product of two continuous functions are continuous. The quotient 
    

    
  is defined 

and continuous  at  a,  provided  g(a)  0. 

If  f is continuous, so are Re(f(x)), Im(f(x)) and  |f(x)|  is continuous. 

The derivative of a function: 

                       f′′(a) =  i    
          

   
 

The usual result for forming the derivative of a sum , a product or a quotient are 

all valid. The derivative of  a composite function is determined  by the chain 

rule. 

There is a fundamental difference between the cases of a Real and Complex 

Independent variable. 

Result:  The  real function of a complex variable either has a derivative zero or 

else the derivative does not  exist. 

Proof:     Let f(x) be real function of a complex variable whose derivative exists 

at z = a .  Then f′(a) is on one side is real, for it is the limit of the quotient 
            

 
 as h   through all real values, On the other side, it is also the limit 

of the quotient  
            

  
 and as such purely Imaginary. 

  Since f′(a) exists and is unique and it is both real and Imaginary  ⇒ f′(a) = 0   

Example:      W = f(z) = |z|
2   
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 w = |z+ z|
2 
- |z|

2    (z+ z) (z̅+ z̅̅ ̅) -zz̅   =   zz̅+z z̅̅ ̅+z̅ z+ z z̅̅ ̅ -zz̅ 

  

  
  =   

   ̅̅̅̅

  
 + z̅ + z̅̅ ̅        (1) 

When  z = 0,   i     
  

  
   =  i      z̅̅ ̅  = 0  ⇒ 

  

  
   = 0 

When   z       Let     0 through all real values 

Take     z = h     ,      z̅̅ ̅ = h. Then , 
  

  
 = z + z̅   h 

  

  
 =  i     

  

  
 = z + z̅      

 z   through purely imaginary values,   z  ih  and  z̅̅ ̅ = -ih 

When   z   ⇒ h    

From (1) , 
   

  
 = -z +z̅  …………………………(3) 

From  (2) and  (3),  
  

  
 does not exist when z    , since the limit is unique. 

Therefore 
  

  
 exists only at the origin.  

 The case of a complex function of a real variable  can be reduced to the real 

case. 

z(t) = x(t) +iy(t)   ⇒ z′(t) = x′(t) + y′(t) 

The existence of z′(t) is equivalent to the simultaneously existence of  x′(t) and 

y′(t). 

Analytic  Function: 

 The class of analytic function is formed by the complex functions of a complex 

variable which posses a derivative whenever  the function is defined.  
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The sum and product of two analytic functions is again analytic. The same 

is true for the quotient  
    

    
 of two analytic functions, provided that  g(z) also not 

vanish.  In general case, it is necessary to exclude the points at which  g(z) = 0. 

The definition of the derivative can be written in the form  

     f′(z) =  i    
           

 
 . 

 As a first consequence,  f(z) is necessarily continuous . 

    For,       f(z+h) - f(z) = 
 [             ]

 
 

 i     f z  h  f z      i    
              

 
                                                                                            

      Therefore  i    f z  h  = f(z) . Therefore  in general the converse is not 

true. 

Example:    f(z) = |z|
2
. It is continuous at all the points.   But it is not 

differentiable when z ≠ 0. 

If  f(z) = u(z) + iv(z) is continuous then it implies u(z) and v(z) are both  

continuous. 

Theorem 1:       Let w = f(z) = u(x,y)+iu(x,y) be differentiable at any point in a 

region D .   Then the partial derivatives ux,uy and vx,vy exist and satisfy the 

Cauchy  Riemann equations ux = vy ,  uy = -vx    (i.e) 
  

  
 = 
  

  
   ;    

  

  
 = - 
  

  
. 

Proof: 

     Let f(z) = u(x,y) + iv(x,y) be analytic at any point z of  the region D. 

 Therefore, f′(z) =  i    
           

 
 exists and is unique . (i.e) It is independent 

of  the path along which h   0. 

If h =  x then  f′(z) =  i     
                

  
 +i   i     
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 = 
   

  
+ i 
     

    
    ( 

  

  
   

Therefore  f (z) = ux+ ivx    (1) 

Since f′(z) exists, the above limit exists which means that  ux and  vx exist. 

If h = i y   ,   f (z) =  i     
                 

   
 + i  i     

                 

   
 

        = -i 
  

  
 + 
  

  
  = -i

  

  
 

f′(z) = -i uy+vy  (2) 

Since f′(z) exists, the above limit exists which means that  uy and  vy exist 

 Since the limit should be unique, from  (1)  and  (2)        ux + ivx= -i uy + vy 

Equating real and imaginary parts, we have ux = vy  and uy = -vx 

These are called  C-R equations.  

The following theorem is the sufficient condition for function is to be analytic. 

Theorem 2:       If u(x,y) and v(x,y) have continuous first order partial derivative 

which satisfy the C-R equations , then f(z) = u(z) + i v(z) is analytic with 

continuous derivative f′(z). 

Proof:      Let f(z) = u(x,y) + iv(x,y)  where  ux = vy , uy = -vx 

Now,  f(z+h+ik) - f(z) = f(x+iy+h+ik) - f(x+iy)  = f(x+h+i(y+k)) - f(x+iy) 

                                  = f(x+h+i(y+k)) - f(x+iy) 

                                  = u(x+h,y+k) + i v(x+h,y+k) - u(x,y) - i v(x,y) 

                                  = u(x+h,y+k) - u(x+h,y) + u(x+h,y) - u(x,y) 
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                             +i [v(x+h,y+k) - v(x+h,y) + v(x+h,y) - v(x,y)] 

Using mean value theorem we get, 

u(x+h , y+k) - u(x+h , y) = k   (x + h , y +   k)        (0 <   < 1)      [     exist] 

                   = k(  (x,y) +   ) where     0 as h    k  0 [      is continuous] 

u(x+h ,y) – u(x , y) = h  (x+h   , y)        (0<  <1)                          [    exist] 

                       = h[  ((x,y)+  ] where      as h 0, k 0 [    is continuous] 

u(x+h , y+k) – u(x , y) = h 
  

  
  +k 

  

  
 + h  + k   

                                      = h 
  

  
 + k 

  

  
 +             where        =   k + h   &  

                                                                         where         as h 0, k 0                

Similarly, 

v(x+h , y+k) – v(x , y) = h 
  

  
 + k 

  

  
 +            where        = k   + h   

                                                                   where       0 ,      0 as h 0 , k 0 

Taking limit h+ik  0 

   

    
 , 
   

    
 , 
   

    
 and 

   

    
   0       [as h   k    and               0] 

  
  

    
    

  

    
     as h+ik   

 f(z+h+ik) – f(z) = u(x+h , y+k) – u(x , y) + i(v(x+h , y+k) – v(x , y)) 

                             = h 
  

  
 + k 

  

  
 +    + i (h 

  

  
 + k 

  

  
 +   ) 

                             = h ( 
  

  
 + i 
  

  
 ) + k ( 

  

  
 + i 
  

  
 ) +    + i    
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                             = h (
  

  
 + i 
  

  
 ) + k ( 

   

  
 + i 
  

  
 )+   +i    [   =   ,    = -  ] 

                             = h (
  

  
 + i 
  

  
 ) + ik (

  

  
 +  i 

  

  
 ) +    + i    

                             = (h + ik) (
  

  
 + i 
  

  
 ) +    + i            

Hence,      i       
              

    
  = 
  

  
 + i 
  

  
  +  i       

      

    
  

                                                         = 
  

  
 + i 
  

  
   

Since       and     exist and are unique,    (z) exists. 

Hence f(z) is analytic at an arbitrary point z.   It is analytic in a region. 

Hence the theorem is proved. 

It is observed that  as the C.R equations are necessary condition for 

differentiability, if they are not satisfied at a point then the function is not 

differentiable at that point. 

Note that  as f ‘(z) =     i    then |   z  |  = |    i  |
          

                                               =    
  +   

  

                                               =      +   (-  )   [     = -      ,    =    ] 

                                                =      -        

         We shall  prove later, the derivative of an analytic function is itself 

analytic. 

   ⇒ u and v will have continuous partial derivatives of all order and in particular 

the mixed derivatives will be equal. 

         From the C-R equation,      =      and     = -     

                                          ⇒     =        and       = -     

                                          ⇒     = -        [     =    ] 

                                          ⇒     +     = 0 
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(i.e)   u = 
   

   
  +  
   

   
 = 0.  Similarly,    v = 

   

   
  +  
   

   
 = 0 

            A function u satisfies the Laplace’s equation   u = 0 is said to be 

harmonic. 

            The real and imaginary parts of an analytic functions are harmonic. 

   If two harmonic function u and v satisfies the C-R equations then v is said to 

be harmonic conjugate to u. 

                 If v is a harmonic conjugate of u then  –u is the harmonic conjugate of 

v and conversely. 

            It is also true that the harmonic conjugate is unique except for an additive 

constant. 

Observation: f(z) is analytic function on D if and only if v is harmonic 

conjugate of  u. 

    If f(z) = u(x,y) + iv(x,y) is analytic. 

    ⇒ u and v satisfy the C-R equations. 

    ⇒ v is a harmonic conjugate of u. 

Conversely 

             If v is a harmonic conjugate of u , by theorem  2 , the function f(z) = 

u(x,y) + iv(x,y) is analytic.[for this purpose, we make the explicitly that u and v 

have continuous first order partial derivatives] 

Example 1: 

Find the harmonic conjugate of a harmonic function u(x,y)=   -   . 

               = 2x  ,      = -2y 

Using  C-R equations,     = 2x  and   -   = -2y    ⇒   = 2y 

Consider      = 2y.  Integrating  w.r.to x keeping y as constant 

                     v = 2yx +  (y)      ⇒    = 2x +  ’(y) 

                    ⇒ 2x = 2x +  ’(y)     ⇒     ’(y) = 0 

                  ⇒     (y) = c (a constant) 
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                   v = 2xy + c 

f(z) = u+iv   =     -    + i(2xy + c) 

      =     -    + i2xy + ic 

      =        + ic   =     + ic 

Example 2: 

      Consider a complex function f(x,y) of  two real variables. Let z = x + iy ,      

 ̅ = x - iy and  x = 
   ̅

 
 , y = -i(

   ̅

 
). With the change of variables we can consider 

f(x,y) as a  function of z and  ̅ which will be treated as independent variables. 

Soln:         
  

  
 = 
  

  
  
  

  
 + 
  

  
  
  

  
 

                     = 
  

  

 

 
 + 
  

  
 
  

 
    = 

 

 
  (
  

  
 – i 
  

  
) 

                 
  

  ̅
 = 
  

  
  
  

  ̅
 + 
  

  
  
  

  ̅
 

                     = 
  

  

 

 
 + 
  

  
 
 

 
    = 

 

 
  (
  

  
 + i 
  

  
) 

If  f  is analytic then  
  

  
    

  

  
 

           ⇒    
  

  
  
  

  
 = 0    ⇒  

  

  ̅
 = 0 

          ⇒  any analytic function is independent of  ̅ and a function z alone. 

Corollary 3: 

         This formal reasoning supports that analytic functions are true functions of 

a complex variable as opposed to functions which are more adequately described 

as complex functions of two real variables. 
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         By similar formal arguments, we derive a simple method which allows to 

compute without the use of integration. 

         The analytic function f(z) whose real part is given harmonic function u(x,y) 

[given a harmonic function u without the use of integration we are now going to 

determine the analytic function f(z)]. 

          Note that  
  ̅

  
 = 0 ⇒     ̅̅ ̅̅ ̅̅  may be considered as a function of  ̅ , denote it 

by  (̅ ̅) 

            ⇒ u(x,y) =  
 

 
 [ f(z) + i     ̅̅ ̅̅ ̅̅ ] 

                          =  
 

 
 [ f(z) + i  (̅ ̅)] 

                          =  
 

 
 [ f(x+iy) + i  (̅x-iy)] 

This is a formal identity.  It is reasonable to expect that it holds even when x 

and y are complex. 

   Let x =   ⁄    , y =    ⁄  

u(     ⁄    ,    ⁄ ) = 
 

 
[f(z) +  (̅0)]  ………………  (1) 

Since f(z) is only determined upto a purely imaginary constant we may as well 

assume that f(0) is real. 

⇒  (̅0) = u(0,0) 

  f(z) = 2u (     ⁄    ,    ⁄ )  -  u(0,0)     [By   (1)] 

A pure imaginary constant can be added at will.  

NOTE: In this form,the method is definitely related to the function u(x,y) which 

are rational in x and y for the function must have the meaning for the complex 

values of the arguments. 
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Example 3:  Show that the harmonic function satisfies the formal differential 

equation  
   

    ̅
 . 

Soln:      Given,    u is a harmonic function.    ⇒    = 0        ⇒ 
   

   
 + 
   

   
  = 0 

Now,      
   

    ̅
 = 
 

  
[
  

  ̅
]   =  

 

  
[
  

  
 . 
  

  ̅
 + 
  

  
 . 
  

  ̅
 ] 

                       =  
 

  
[
  

  
 . 
 

 
 + 
  

  
 ( 
  

  
  ]   = 

 

 
 
 

  
[
  

  
 + i 
  

  
 ] 

                       = 
 

 
 [
   

   
 . 
  

  
 + 
   

    
 . 
  

  
 + i (

   

    
 . 
  

  
 + 
   

   
 . 
  

  
 ] 

                       = 
 

 
 [
   

   
 . 
 

 
 + 
   

    
 . 
 

  
 + i 

   

    
 . 
 

 
 + i 
   

   
 . 
 

  
 ] 

                       =  
 

 
 [
   

   
  -i 
   

    
  + i 

   

    
 . + 
   

   
  ] 

                         =  
 

 
 [
   

   
  + 
   

   
  ] =   

 

 
 . 0  = 0 

Aliter:             
  

   
  + 
  

   
  = 4 

  

    ̅
 

Theorem 4: 

 If f(z) = u +iv be an analytic function in a region D,then prove that f(z) is 

constant in D. If any one of the following conditions hold , 

                (i) f ’(z) vanishes identically in D.    (ii) R[f(z)] = u = constant. 

                (iii) Im(f(z)) = v = constant.              (iv) |    | = constant.   

                 (v)arg f(z) = constant. 

Proof:   Now f(z) =u +iv 
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         f ‘(z) = 
  

  
 + i 
  

  
   = 
  

  
 - i 
  

  
  ( By C-R eqn) 

(i) Now,   f ‘(z)   0    ⇒            0     ⇒           0 

          ⇒    = 0 ,    = 0 ,    = 0 ,    = 0 

          ⇒ u and v are constant on any line segments parallel to co-ordinate axis.  

But any two points in D can be joined by such parallel lines. 

          ⇒ f(z) is constant. 

(ii) u = a is constant    ⇒  
  

  
 = 0 ,   

  

  
 = 0 

f ‘(z) = 
  

  
 + i 
  

  
    = 

  

  
 - i 
  

  
    = 0 

By (i),  f(z) is constant. 

(iii) v = constant    ⇒  
  

  
 = 0 ,   

  

  
 = 0 

                      f ‘(z) = 
  

  
 + i 
  

  
 = 
  

  
 + i 
  

  
 = 0 

By (i),  f(z) is constant. 

(iv) |    | = constant   ⇒    +    = constant 

               ⇒   
  

  
     

  

  
 = 0 …………..(1) 

                     
  

  
     

  

  
 = 0  …………..(2) 

u X (1) + v  X (2) 

⇒   
  

  
     

  

  
   

  

  
     

  

  
 = 0 
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⇒          
  

  
 = 0    [  

  

  
   

  

  
  
  

  
  
  

  
 ] 

⇒         = 0  (or)     
  

  
 = 0 

Similarly, 

⇒         = 0  (or)     
  

  
 = 0 

If           0 then u and v are constant 

Therefore      is constant. 

If         = 0 at a point and it is constantly zero and      = 0. 

(v) arg      = c = constant 

⇒ t n  (
 

 
)       ⇒

 

 
 = t n      ⇒     t n      ⇒     ot     

        = kv  where k =  ot    ⇒          ⇒                  = 0 

⇒                = 0    ⇒            = constant  [By (ii)] 

⇒ f(z) = constant 

Polynomials: 

        Every constant is a analytic function with derivative zero. The simple  non 

constant analytic function is z whose derivative is one. Since the sum and the 

product of two analytic functions are again analytic ⇒ every polynomial        

p(z) =        ………+     is an analytic function and its derivative        

f‘(z) =    ………..+          is analytic. If       0 then deg p(z) = n. 

           For formal reason the constant zero is  regarded as a polynomial and its 

degree is      Therefore, the zero polynomial is excluded from our 

consideration. 
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     By fundamental theorem  of Algebra, P(z) = 0 has at least one root for n   0. 

 If P(  ) = 0 ⇒ P(z) =(z-   )  (z) where   (z) is the polynomial of degree         

n-1. The repetition of this process leads to a complete factorization                      

P(z) =   (z-   )……… (z-   ), where    …….,    are not necessarily distinct. 

Moreover, the factorization is uniquely determined except the order  of the 

factors. 

          If exactly h of    coincide, their common values called a zero of  P(z) of 

order h. Sum of the orders of the zeros of the polynomial is equal to its degree. 

Determination of the order of zero : 

    Suppose   is a zero of P(z) of order h. 

⇒ P(z) =          (z) and   (     0 and successive derivative yields, 

P( ) = P’( ) =…………=         = 0. 

(i.e) the order of a zero equal to order of the first non-vanishing derivative. 

NOTE: Zero of order one is called a single zero and characterized by the 

condition, P( ) = 0 and P’( )   0. 

THEOREM 5: (LUCAS) 

  If all zeros of a polynomial P(z) lie in a half plane, then  all zeros of a 

derivative P’(z) lie in the same half plane. 

Proof: If   1, 2, 3,………, n  are zeros of P(z). Then P(z) can be written as,        

P(z) an(z- 1)(z- 2)……..(z- n),where an 0  

Taking log on both sides 

          og      og   + og     )+ og     )+……+ og     ) 

Differentiate with respect to z, we get 
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+
 

    
+……+

 

    
  ⟶(1) 

Let the half plane H be defined as the part of the plane where   (
   

 
)    

If  k is in H and z is not in H  

Then we have   (
    

 
) =   (

        

 
) 

                                      =   (
   

 
) +   (

       

 
) 

                                      =  (
   

 
) -   (

    

 
)       

But the imaginary parts of a reciprocal number have opposite signs. 

Therefore, under the same assumption    (
 

    
)    0 

  If this is true for all k, therefore from (1) 

                                       b  
     

    
 = ∑

 

    

 
    

                            ( 
     

    
)    (∑

 

    

 
   )   = ∑   (

 

    
) 

      <  0                             

                                          P’(z)    

                All the zeros of a derivative P’(z) lie in the same half plane H. 

 RATIONAL FUNCTION 

     Let R(z)  
    

    
 be the quotient of two polynomials. We can assume that P(z) 

and Q(z) has no common factors and hence no common zero. 
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   R(z) will be given the value of   at the zeros of Q(z). It must therefore must 

be considered as the function with the values in the extended plane, and as such 

it is continuous . 

The zeros of Q(z) are called poles of R(Z). R’(z) 
                   

     
   only when 

Q(z)  .R’(z) has the same poles as R(z),the order of each poles being increased 

by 1. 

Poles and zeros of a rational function at  . [      i        ] 

Consider        (
 

 
) .   (i.e) R(     (0) 

               If   (0)   0 or  , the order of the zero (or) the pole at   is 

defined as the order of the zero (or) pole of   (z) at the origin 

 

      R(z)    
            

 

            
 

     

 

We obtain,         
    

   
      

        

   
     

        
 

 

By the power      belongs either to the numerator or denominator. 

 

Case(i) m > n 

   (z) has a zero of order m-n at the origin. 

      has a zero of order m-n at  . 

 

Case(ii) m < n 

      has a pole of order n-m at  the origin 

      has a pole of order n-m at   

 

Case(iii) 

R          
  

  
     

Since R(  is neither zero nor   

      has neither zero nor a pole at   
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                         Number of zeros  

                 In the finite 

                     plane          At             Total 

Number of pole 

In the finite 

      plane        At          Total 

m > n n m - n m m - m 

m < n n - n m n - m n 

m = n n - n m - m 

 

NOTE: 

   We can now count the total no of zeros and poles in the extended plane. The 

count shows that the no of zeros including those at   is equal to bigger of m and 

n. 

   This common number of zeros and poles is called order of the rational 

function. 

If a is any constant, the function R(z) - a has the same poles as R(z) and 

consequently the same order . 

The zeros of R(z) - a are roots of the equation R(z)=a . 

Theorem 6 

A rational function R(z) of order p has p zeros and p poles and every equation  

R(z) = a has exactly  p roots. 

Proof:   

         Let   R(z) 
    

    
   be a rational function. 

Consider R(z) – a = 
    

    
 – a  = 

            

    
 -----------(1) 
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The numerator and denominator can not have a common factor. 

For, if so, it would be a factor of P(z) and Q(z) both and therefore R(z) would 

not be in the lowest form. R(z) is not a rational function. This is a contradiction. 

It follows that the order of R(z) – a = p = order of R(z). Therefore, R(z) – a has 

exactly p roots.  

Theorem 7: Every rational function has a representation by partial fraction: 

Proof: First to derive this representation R(z) has a  pole at    we carryout  the 

division of P(z) by Q(z)  until the degree of the remainder is atmost equal to that 

of the denominator. 

               ⟶(1) Where G(z) is a polynomial without constant term 

and H(z) is finite at  .The degree of G(z) is the order  of the pole at   the 

polynomial G(z) is called the singular part of R(z) at  . 

Let the distinct finite poles R(z) be denoted by              . The function     

R(   
 

 
) be the rational function of    with a pole at   is equal to  . 

  From decomposition (1),  R(   
 

 
)              

     Let z =    
 

 
. Then         (

 

    
) +   (

 

    
) ⟶(2) 

Here   (
 

    
) is a polynomial in 

 

    
 without constant term called the singular 

part of R(z) at z =     .The function   (
 

    
) is finite for z =                            

Consider now the expression,  R(z) - G(z) - ∑   
 
   (

 

    
)  ⟶(3) 

This is a rational function which cannot have other poles than                 and 

   At z =     we can find that the two terms with finite limits and the same is 

true at  . 
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Therefore, (3) has neither any finite pole not a pole at    A rational function 

without poles must reduce to a constant . 

If  this constant is observed in G(z), We obtain R(z) = G(z)+ ∑   
 
   (

 

    
) 

                                           

3.3 POWER  SERIES 

    A power series is of the form   +  z+   
 +……+   

 +……  where the 

coefficients    and the variable z are complex. 

NOTE: 

  ∑   
 
          

  is a power series with respect to the center   .consider the 

geomentric series 1+z+  +……..+  +…… Whose partial sum is                          

   = 1+z+….+     
    

   
 . Since   ⟶0 for | |    and |  |    for | |   , 

 The geomentric series convergent to 
 

   
 for | |    and diverges for | |    . 

THEOREM 8 (ABEL) 

      For every power series ∑   
 
      there exists a number R, 0      

called the radius of convergence with the following properties. 

1. The series converges absolutely for every z with | |   .   If 0   ρ    the 

convergence is uniform for | |   . 

2. If | |    the terms of the series are unbounded and the series is consequently         

divergent. 

3.  In | |    the sum of the series is an analytic function. The derivative can be 

obtained by the term wise differentiation and the derivative series has the same 

radius of convergence. 
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Proof:  The circle | |    is called the circle of convergence .We shall show 

that the theorem holds if we choose R according to the formula   

                                        
 

 
  i       |  |

 

 ⟶(1) 

This is known as Hadmard’s formula. 

Let | |     Then there exists    such that | |         
 

 
 
 

 
 

By the definition of limit superior and equation (1), there exists a positive  

integer    such that |  |
 

  
 

 
     (i.e) |  |

 

  
 

 
 for all n    ⟶(2) 

                       |   
 |  (

| |

  
)
 

 for large n 

Since the power series ∑   
  has a convergent geometric series as a majorant 

and is consequently convergent. 

To prove the uniform convergence for | |       We choose    with   

       

From (2), We get     |  |  
 

     
 for all n     

                   |   
 |  (

| |

  
)
 
 (
 

  
)
 

 for all n        [   | |   ] 

Since the major ant is convergent and has constant terms, we conclude  by 

Weierstrass M-test that the power series is uniformly convergent.  

If  | |      we choose   so that     | |            
 

 
 
 

 
  

Since 
 

 
  i    |  |

 

     There are arbitrary large n such that |  |
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(i.e)  |  |  
 

  
 and consequently |   

 |  (
| |

 
)
 

 for  infinetly many n. Hence 

the terms of the series is unbounded accordingly the series is divergent. 

STEP:1 

     The derivative series ∑     
    

  has the same radius of convergent 

Proof: 

      Let R and    be the radii of convergence  of the series ∑   
  and 

∑     
    

  respectively. 

 Then 
 

 
      ̅̅ ̅̅    |   |

 

       and     
 

  
    ̅̅ ̅̅    |    |

 

  

                                 
 

  
 =    ̅̅ ̅̅     

 

 |   |
 

  

            Therefore the theorem is over if we show that  i     
 

      

To prove this, Let  
 

        so that n        
          

                         
      

 
   
      

 
 

Hence   
 

 
        

 
 (or)     

  
 

   
 so that       as n    

                   i     
 

    and so R’ = R.  

STEP 2:     

For | |         We  write         ∑    
  

      

                                                                  

where                     
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                   ∑    
  

      and also        ∑     
    

  =   i      
                       

To prove:         
      

Consider the identity  

          

    
      .

            

    
    

     /     
             (

            

    
) 

⟶(3)  where we assume that z ≠ z0 and |z0| < ρ < R 

         
            

    
  
∑    

  ∑     
  

   
 
   

    
       

                             ∑
    

    
  

    

 
     

                             ∑     
      

 
            

     

  |
            

    
|     ∑   

   │ak│  
k-1
[since │z│<    and │zo│<  ] 

Now  ∑   
   │ak│ 

k-1
 is the remainder term  in a convergent series . 

Hence,  we can find  no such that |
            

    
| < € 3     n   no --------(4) 

  

 i       
     = f1(z)  for │z│< R and since │zo│< R ,  i       

      = f1(zo) 

=>There exists an n1 such that │Sn’(zo) - f1(zo)│< € 3 ----------(5)    n    n1. 

Choose a fixed n   no , n1 . We know that  Sn’(zo) =  i     
            

    
 

      

By the definition of derivative , we can find   > 0 such that 0<│z - zo│<   

   |
            

    
           |  <  € 3   --------(6)   
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Using (4),(5) and (6) and it follows by (3) that, 

|
          

    
–        | <  € when 0 < │z-zo│<    

 f’(zo) exists and f1(zo) = f ’(zo). 

Remark:  Every analytic function has a Taylor development .The power series 

development of f(z) is uniquely determined if it exists. 

A power series with positive radius convergences has derivatives of all orders. 

They are given explicitly by 

 f(z) = ao+a1z+………..+an z
n 
+………………… 

f ‘(z) = a1+2a2z+……………..+nanz
n-1
+……….. 

f ”(z) = 2a2+6a3z+……………+n(n-1)anz
n
+…… 

………………………………………………… 

f 
k
(z) = k!ak+  

    

  
 ak+1z + 

    

  
 a k+2 z

2
 +………. 

In particular, ak  =  
     

  
 

  The power series becomes f (z) = f (0) + 
     

  
 z +…..+ 

       

  
  +……. 

This is the familiar Maclarian – Taylor development. But we have proved only 

under the assumption that f(z) has a power series development. 

The following  theorem  refers to the case where a power series converges at a 

point on the circle of converges at a point on the  circle of convergence and 

note that R = 1. 
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Theorem : 9 (Abel’s  Limit theorem) 

∑an  convergences .Then f(z) = ∑    
  

    tends to f(1) as z approaches 1. In 

such a way that 
     

     
 remains bounded. 

Proof. 

We may assume that  ∑   
 
   =0, since this can be obtained by adding a 

constant to ao. Now,  f (1) = ∑   
 
   = 0. Let Sn= ao+a1+……………+an 

Consider the identity (summation by parts)  

Sn(z) = ao+a1z+………..+a n z 
n 
 = so+(s1-so)z+…………….+(sn-sn-1)z

n 

= so(1-z) + s1(z-z
2
) +………..+ sn-1(z

n-1
-z

n
) + s n z 

n 

= (1-z)(so+ s1z +……………+sn-1z
n-1

) +s n z 
n
 

But s n z 
n  0 as n   (since ∑a n= 0, sn     

    ) 

   f (z) = (1-z) ∑    
  

    

Since   
     

       
 remains bounded, there exists a positive constant k such that  

     

     
    

Since Sn         ,  given      choose m so large that │Sn│<   for n    

Now              ∑    
  

   

       ∑    
    

           ∑    
  

   --------(1) 

and      ∑    
  

         ∑        
  

    

    <       ∑      
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                                         =       
    

   | |  
  <    

     

     
     

Therefore    (1)      becomes                ∑   
   
         

The first term on the right can be made arbitary small by choosing  z sufficiently 

close to1. 

Therefore                    subject to the stated restriction. 

PROBLEM 1: 

1).Find the radius convergences of the following series. 

i) ∑n
p
z

n 
    ii)∑

  

  
   iii)∑ n!z

n    
iv)∑(1+1 n)

n2
z

n 

soln : 

i)   an= n
p    

an+1= (n+1)
p
 

R =  i    
  

    
    =  i  

   

  

      
     =  i  

   
(
 

   
)
 

 

=  i  
   

 

   
 

 
  

 =1 

ii) ∑
  

  
 

  an= 
 

  
   an+1= 

 

    
 

R=  i  
   

 

  
 

      

   =  i  
   

      

  
  =  i  
   

       

  
   =  i  
   
       =   

iii) For z = 0 the series is convergent.  

an=n!,   an+1= (n+1)!.  
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Then  R=  i  
   

  

    
 =  i  
   

  

      
  =   i  
   

  

       
   =  i  
   

 

   
  = 0 

iv)  an  =  (1+
 

 
    

        
   

 
 =   i  
   
  an )

1/n  
=   i  
   

 (1+
 

 
)

n   
 = e . Therefore,  R = 

 

 
  

Problem 2. If ∑ an z
n
 and ∑ bnz

n
 have the radii of convergences R1 and R2 .Show 

that the radius of convergences for ∑    z
n
 is atleast R1R2 . 

Soln:    
 

  
     
   
̅̅ ̅̅ ̅  │an│

1/n
   and  

 

  
 =     
   
̅̅ ̅̅ ̅ │bn│

1/n
 

Let R be the radius of convergence of  ∑anbnz
n
 

 

  
      
   
̅̅ ̅̅ ̅       │

1/n 
 =     
   
̅̅ ̅̅ ̅│an│

1/n
│bn│

1/n   
=     
   
̅̅ ̅̅ ̅ │an│

1/n      
   
̅̅ ̅̅ ̅̅  │bn│

1/n   
= 
 

  
 .
 

  

 

=> R=R1R2 

Problem3. Find the radius of convergences of a power series f (z) =∑
  

    
 
  and 

prove that (2-z) f (z) - 2          

Solution:  a n = 

 

    
  ,  a n+1 = 

 

      
.  and  R =  i    

  

    
  

R  =   i 
   

      

    
   =  i 
   

     
 

  
 

     
 

  
 
    = 

    

   
   =  2 

f (z)  = ∑
  

    
 
     <  ∑

  

  
 
    =1+z/2+z

2
/2

2
+……… 

     = 
 

           
 = 
 

   
 [ since │z│< 2    ] 

 i 
   

 (2-z) f (z) =   i 
   

 (2-z) 
 

   
   =  2 

Therefore                          
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UNIT IV 

 COMPLEX INTEGRATION 

4.1 The Line Integrals : 

Definite integral of complex function over a real interval . If  f (t) = u(t)+i v(t) is 

a continuous function defined in an interval (a,b) .Then define, 

∫        ∫        ∫       
 

 

 

 

 

 

 

Properties of the integral 

Property 1 :     ∫          ∫       
 

 

 

 
 

Proof:  Let c =       and   f(t)= u(t)+i v(t). 

∫          ∫       (           )    
 

 

 

 

 

  =∫ [                 ]    
 

 
 

  =∫            ∫          
 

 

 

 
……….(1)        (by defn) 

 ∫     
 

 
 dt = (     ∫                

 

 
 

  = ∫            ∫          ∫         ∫       
 

 

 

 

 

 

 

 
 

  =∫        ∫        ∫       ∫     
 

 

 

 

 

 
  

 

 
 

  =∫             ∫           
 

 

 

 
   ………..(2) 

From  (1) and (2),  ∫           ∫       
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Property 2: When a     |∫       
 

 
|  ∫ |    |

 

 
    holds for arbitrary 

complex function f(t). 

Proof: 

If ∫         
 

 
 then  ∫         

 

 
   ∫       

 

 
 

Clearly,  ∫          ∫         
 

 

 

 
 

Therefore, the given statement is true . 

Now assume that ∫          
 

 
  

From  (1),    Re*∫         
 

 
+ = Re* ∫        

 

 
+ 

Since ‘c’ is arbitrary, we may set c =      where    is real but arbitrary.  

Re*    ∫        
 

 
+ = Re*∫            

 

 
+ 

   = ∫    [
 

 
        ) ] dt    ∫  

 

 
             

    ∫  
 

 
          …………….(1) 

Since                              rg   ∫     
 

 
     

Then  ∫     
 

 
     ∫     

 

 
       ………..(2) 

Re*    ∫        
 

 
+   Re*     ∫        

 

 
    + 

   = Re   ∫        
 

 
  

   = ∫        
 

 
 ……….(3) 
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From   (1) and (3),  We have ∫        
 

 
  ∫  

 

 
          

Complex line integral of f(z) extended over the arc     

 Suppose   is a smooth arc is given by z = z (t), a ≤ t ≤ b and f (z) is 

continuous on   . Then f (z (t)) is continuous in t. We define 

                             ∫        ∫  (    )        
 

 
 

. 

 If   is piecewise differentiable or if   (t) is piecewise continuous the 

interval can be subdivided in the obvious manner.  

 The integral is invariant under change of parameter. A change of 

parameter is defined by increasing function t = t( ) which maps an interval         

α  ≤    ≤ β  into  a ≤ t ≤ b. we assume that t ( ) is piecewise differentiable. 

 By change of variables,  

  ∫  (    )        
 

 
  ∫   ( (    ))   (    )       

  

  
 

 But   (    )      
 

   
 (z (t( ))). 

 ∫   (    )        
 

 
  ∫   ( (    ))

 

   

  

  
 (z (t(z))) dz. 

Hence the integral has the same value whether   is represented by z = z (t) or by 

 z = z (t ( )). 

Note:  We define the opposite are –   by the equation z = z (-t), -b ≤  t ≤ -a. 

 ∫         ∫  (     )         
  

    
   

    =   ∫  (    ) (    )
 

 
     by the change of variable, z = - t 
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    =   ∫        
 

 

Further if      +    +……...+       then  

∫         ∫       
           

 =        

                    = ∫         
  

∫        
  

+……….+∫       
  

 

Integration with respect to arc length 

∫     ∣   ∣
 

 = ∫  (    ) ∣        ∣
 

 
    ∫  (    ) ∣      ∣

 

 
dt 

 |∫       
  

 |  = ∣ ∫  (    )
 

 
  (t) dt ∣   ∫ ∣        ∣ 

 

 
∣     ∣dt 

   ∫ ∣     ∣ ∣   ∣
 

   

Note :  If f = 1   then ∣∫   |    ∫ ∣   ∣
  

                
 

            ∫      ∫  ∣   ∣
  

 =∫  (    ) ∣      ∣       
 

 
(as ds = dx

2
+dy

2
)  

 To find the length of the circle with radius   with centre at a: 

The parametric equation of  circle is z = z(t) = a+    , 0 ≤ t < 2 .             . 

 ∫    ∫ ∣   ∣ 
  

∫ ∣      ∣   
  

 
∣     =∫    

  

 
     =      

RECTIFIABLE ARCS 

      The length of an arc can also be defined as the least upper bound of all sums. 

∣z (  )  z (  ) ∣ ∣z (  )     ) ∣       +∣z (  )       ) ∣  

                                                                           where a =   <    <……. <    = b 
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If the l.u.b is finite we say that the arc is rectifiable.  

Note : Piecewise differentiable arcs are rectifiable arcs. 

Observation: An are z = z (t) is rectifiable iff real and imaginary part of z (t) are 

of bounded variation. 

 For, Since ∣    )       ) ∣ ≤ ∣z (  )       )∣ and 

  ∣ (  )       )∣ ≤ ∣    )       )∣ 

∣     )       )∣=∣                              ∣  

        =∣[             ]   [             ]∣  

  ≤  ∣             ∣  +  ∣    )        ∣  

The sums ∣           ∣+∣           ∣+…………. +∣             ∣  and 

the sums  ∣           ∣ ∣           ∣+…………+∣             ∣, 

       ∣           ∣+∣           ∣+…………. +∣             ∣ are 

bounded at the same time. 

When the later sums are bounded, one says that the functions x(t) and y(t) are of 

bounded variation. 

Therefore  a arc z = z (t) is rectifiable iff real and imaginary part of z (t) are of 

bounded variation. 

LINE INTEGRALS AS FUNCTION OF ARC: 

General line integrals of the form ∫          
 

are often studied as 

function or functional of the arc    

       Assume that                                     in a region         is 

free to vary on Ω. 
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Class of integrals having the property that the integral over an arc 

depends on its end  points. 

   If     and     have the same initial point and the same end points then          

 ∫         ∫        
    

. 

Theorem 1:  

  Integrals  depend only on the end points iff the integral over any 

closed curve is zero. 

 

Proof: 

 If    is a closed curve then   and –   have the same end points and if the 

 integrals depend only on the end points. 

 ∫   ∫    ∫
    

 

 

  ∫   
 

 . ∫   
 

 

Conversely,  Suppose     and    have the same end points. 

(i.e.)  T.P the integral depends only on the end points. 

(i.e.)  To Prove:  ∫   ∫      
    

          have the same end points. 

  By given hypothesis,        is a closed curve 

Since the integral over any closed curve is zero. 

 ∫    
     

  ∫   ∫       ∫   ∫   
         

 

 

 ∫   ∫
    

 

The following theorem gives the necessary and sufficient condition for a line 

integral depends only on the end points 
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THEOREM 2:  

 The line integral ∫         
 

 defined in Ω, depends only on the end 

points of                                   U(x,y) in Ω with the partial 

derivatives 
  

  
      

  

  
  . 

Proof: 

Suppose there exists a function U(x,y) in Ω such that 
  

  
   

  

  
  .  

 To Prove the integral depends only on the end points of   

Let a, b are the end points of   

 

 

 

 

 

 

 

 

 

 

Then ∫         ∫
  

  
     

  

  
    

  
 

   = ∫
  

  
          

  

  
       

 

 
 

   = ∫
 

  
   (         ) 

 

 
    

         

         

  

FIG. 4.1 
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   = ∫     (         ) 
 

 
 

   = [              ]  
  

   = U(x (b),y (b)) – U (x (a), y (a))  

  The line integral ∫         
 

 depends only on the end points of  . 

Conversely, Suppose the line integral ∫         
 

 depends only on the end 

points of    . 

To Prove: There exists a function U(x,y) in Ω such that 
  

  
   

    

  
  . 

Choose a fixed point (         joint it to (x, y) by a polygon   contained in Ω 

whose sides are parallel to the co-ordinate axes. 

 Define a function U(x, y) =  ∫         
 

 

Since the line integral depends only on the end points of   , the function is well 

defined. Choose the last segment of   horizontal, we can keep y constant and let 

x vary without changing the other segment. 

On the last segment we can choose x for parameter and obtained  

U(x,y) = ∫                   
 

 

The lower limit of the integral being irrelevant ,       
  

  
    

In the same way, by choosing the last segment vertical by keeping x constant,  

We have U(x,y) = ∫                   
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Note: 

 If           
  

  
    

  

  
        then           is an exact 

differential.  

Therefore, the above theorem can be stated as, An integral depends only on the 

end points if and only if   the integrand is an exact differential. 

Consider  f (z) dz = f (z) dx + i f (z) dy  

By the definition of an exact differential,   there must exist a function F(z) in Ω 

such that 
     

  
      

      

  
         

 
  

  
     

  

  
  which is the complex form of  C – R equations. 

Further, f (z)  by assumption is continuous. (Otherwise∫        
 

is not defined) 

Hence F(z) is analytic. 

 The above theorem can be restated as follows 

The integral ∫        
 

with continuous f depends only on the end points of   iff 

f is the derivative of an analytical function in Ω. 

Lemma 3: 

 We find that ∫         
 

dz = 0 for all closed curve   provided that the 

integer n ≥ 0. 

Proof: 

For, since f (z) = (z-a)
 n 

 is continuous and f is the derivative of an analytic 

function 

F (z) =
         

     
 in the whole plane. 
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 By the result above, ∫        
 

depends only on the end points of  . 

  the integral over any closed curve is zero. 

 ∫         
 

dz = 0 for any closed curve  .  …….(1) 

If n is negative but not equal to -1. 

The same result hold for all closed curves  which do not pass through a. In the 

complementary region of the point a the indefinite integral is still analytic. 

For n = -1, the equation (1) does not always hold. 

Consider an example. 

 Consider a circle C with centre a represented by the equation  z = a +  eit
, 

0 ≤ t ≤  2   Then  dz =            

We obtain ∫
  

   
  ∫   

          

    

  

  
dt =  2     

Example 1. Compute ∫     
 

where    the directed line segment from 0 to 1+ i. 

Soln:       Let z = x+iy   ,  z = 0 ,  ⇒ x = 0, y = 0   and  z = 1+i  ⇒ x=1, y=1 

Therefore   y = x   ⇒ dx = dy 

                 =                        

Therefore ∫     ∫         
 

  
         

  

 
  
 
   
   

 
 

Example 2: Compute ∫ ∣    ∣∣   ∣
∣ ∣  

    

Soln:   Given  ∣z∣=1 then    z = ∣z∣    =       os t  i sin t         
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               ∣    ∣  ∣  os           ∣                     
 

 
 

Now, dz = i    dt implies |dz| = dt. Then, 

∫ ∣    ∣∣   ∣
∣ ∣  

   = ∫     
 

 

  

 
 dt =  0

    
 

 
 

 

1
 

  

= -4(cos   - cos0) = 8. 

4.2 Cauchy’s Theorem for a rectangle 

          Consider a rectangle R defined by the inequality a ≤ x ≤  b and c ≤ y ≤ d. 

This perimeter can be considered as a simple closed curve consisting of four line 

segments whose direction we choose so that R lies to the left of the directed 

segment. The order of the vertices is (a,c), (b,c), (b,d), (a,d). We refer to this 

closed curve as the boundary curve (or) contour of arc and we denote it by     

        R is chosen as a closed point set and hence it is a region. Further, a function 

is analytic on the rectangle R means that it is analytic on an open set which is 

contained in R. 

Theorem 4: 

The function f(z) is analytic on R.  Then  ∫       
  

 = 0. 

Proof:   Proof is based on the method of bisection. Define      = ∫       
  

 , 

which we will use for any rectangle contained in the given one. 

If R is divided into 4 congruent rectangles                      by joining the  

mid points of opposite sides. 

  We denote the boundaries of the rectangles               , k = 1, 2, 3, 4. 

Therefore   We find that                              since the 

common sides cancel each other. 

Now,∫        ∫         ∫         ∫   ∫       
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Denote ∫          (    )
     

 

Clearly for at least one     (k = 1, 2, 3, 4), we have ∣ ɳ       ∣ ≥ 
 

 
 ɳ (R). 

 

 

 

 

 

 

 

 

 

 

 

 

 

We denote this rectangle by     . If several R
k 

have this property that choice 

shall be made according to the definite rule. This process can be repeated 

indefinitely and be obtain the sequence of nested rectangle or R ⊃ R1⊃ R2 

⊃…….⊃ Rn⊃…… 

With the properties,  ∣ɳ (   ) ∣ ≥ 
 

  
 ∣ɳ      ∣ 

                                                     ≥ 
  

 
 (
 

   
∣ ɳ      ∣  

 

  
∣        ∣   . 

                                                       ≥ 
 

  
∣     ∣ 

Therefore, ∣ɳ (Rn) ∣ ≥ 
 

  
∣     ∣          

The rectangle Rn converges to a point z* R in the sense that Rn will be 

contained in the prescribed   neighborhood ∣z-z*∣ <   as soon as n sufficiently 

large.    

            

            

FIG. 4-2.        Bisection of rectangle. 
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 First of all, we choose   so small that f (z) is defined and analytic in           

∣z-z*∣ <  . 

 Secondly, if     is given, we choose   so that 

   ∣z-z*∣ <  ⇒ ∣
             

    
         ∣     

⇒∣                        ∣    ∣     ∣     ∣     ∣        ) 

We assume that   satisfies both conditions Rn is contained in ∣z-z*∣ <   . 

 Also we have ∫           ∫       
      

          [  1 and z are the derivative 

of analytic function z and  
  

 
respectively] 

          ∫        
   

 

 ∫             ∫          ∫                ∫   
            

 

 ∫ [(          )        
   

      ]   

Therefore     |     |  ∫ |        
               | |  |

   

 

                               ≤  ∫  |    | |  |
   

 

If dn denotes the length of the diagonal of Rn then z ϵ Rn  and so | z -    |   d  

If  Ln denotes the length of the perimeter of Rn then  

   |     | ≤     ∫  |  |
   

  =         .  

If d and L denotes the length of the  diagonal and the perimeter of R 

respectively, then dn = 2
–n

 d and Ln = 2
-n

 L. Therefore, |     | ≤  4
-n       

     ) 
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From (1) and (3)  , |     | ≥  
 

  
∣     ∣ 

                             ∣     ∣  ≤  4n
 |     |  ≤ 4

n
 4

-n       ≤       

Since   is arbitrary, we have        . Hence ∫       
  

 = 0. 

Theorem 5   

Let  f(z) be analytic on the set R’ obtained from a rectangle R by omitting a 

finite number of interior points   . If it is true that  i                    for 

all I, then  ∫        
  

 

Proof:  It is sufficient consider the case of a single exceptional point  . (For 

evidently R can be divided into smaller rectangle which contains at most one     

We divided R into 9 rectangles as shown in the figure. 

 

 

 

 

 

 

 

 

 

 

  

Therefore, ∫       
  

 =   ∑ ∫       
   

 
    . 

Hence, by Cauchy theorem for rectangle applied to all rectangles except R0 

∫       
   

 = 0, i = 1, ….,8. 

  

FIG. 4-3 
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Therefore,  ∫       
  

 =   ∫       
   

. Given,  i                  

If ϵ > 0 we can choose the rectangle R0 so small that |z –   | |    |  < ϵ. 

Consider |    |    
 

|    |
  on  R0. 

 |∫       
   

| ≤  ∫ |    ||  |
   

  < ϵ ∫
|  |

|      |   
  ….(1) 

Let us assume R0 is a square with centre   and a be the side of the square  R0. 

Therefore,  | z –  | ≥ 
 

 
  ⇒     

 

|    |  
      

 

 
 .   

Now,  ∫
|  |

|      |   
 
 

 
∫ |  |  

 

 
      

   
  

Therefore (1) becomes,  |∫       
   

|      Since   is arbitrary, the theorem 

follows. 

Note: The hypothesis of the theorem is fulfilled if f(z) is analytic and bounded 

on R’.   

Cauchy’s theorem in a disc  

 It is not proved that integral of an analytic function over a closed 

curve is always is zero. ∫
  

   
                             

 
 

In order to make sure that the integral vanishes, it is necessary to make a special 

assumption concerning the region Ω in which f(z) is known to be analytic and to 

which the curve γ is restricted. 

 We must restrict to a special case we assume that Ω is a open disc        

|z – z0| < ρ to be denoted by Δ. 
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Theorem 6:  

If f(z) is analytic in a open disc Δ, then ∫         
 

 for every closed curve γ 

in Δ. 

Proof:  Let O be centre z0 = x0 +i y0 and P be any point z = x + iy inside Δ. We 

define a function F(z) = ∫       
 

……..(1)  where ζ consists of the horizontal 

line segment OA from the centre (x0 ,y0) to (x ,y0)  and the vertical segment AP 

from (x ,y0) to (x, y). 

 

 

 

 

 

 

 

 

F(z) = ∫       
   

 = ∫         ∫              
    

 

                                 = ∫             ∫          
 

  

 

  
 …….(3) 

From the figure, OAPBO is a rectangle. By Cauchy theorem of rectangle, 

∫       
     

    

Let ζ1 be a curve consists of the vertical segment OB from (x0 ,y0) to (x0, y) and 

the horizontal segment BP from (x0 ,y) to (x, y). 

 
P(x,y) 

         

FIG. 4-4 
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OAPBO = OAP + PBO = ζ + (-ζ1) = ζ - ζ1. Therefore, ∫       
      

    

  ∫        ∫       
     

     ∫        ∫       
    

   

  ∫          ∫       
    

 

Therefore, F(z) = ∫       
  

 = ∫         ∫              
    

 

                                               = ∫   x          ∫          
 

  

 

  
 

                                               =  ∫   x         ∫          
 

  

 

  
…..(5) 

From (3),   
  

  
 = i f(x+iy) = i f(z) 

From (5),  
  

  
 =  f(x+iy) = f(z)      

  

  
 +i 
  

  
  = f(z) – f(z) = 0 

If  F(z) = u + iv  then 
       

  
 +i 
       

  
  = 0 

  
  

   
+ i 
  

  
 + i 
  

  
  - 
  

  
  = 0     ( 

  

   
 - 
  

   
 ) + i (

   

   
  
  

   
   = 0 

   
  

   
 - 
  

   
  = 0 and  

   

   
  
  

   
  = 0     ux = vy and vx = - uy 

   ux = vy and uy = -vx 

  u and v satisfy C.R equations. 

Now, 
  

  
      , 

  

  
 =  i f(z) and f(z)  is continuous 

  ux , uy , vx , vy are all continuous. Therefore, F(z) = u + iv is analytic on Δ 

  f(z) dz is exact differential 
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   The integral depends only on the endpoints. 

   The integral over any closed curve γ in Δ is zero. 

Therefore, ∫         
 

. 

Theorem 7: 

 Let f(z) be defined in the region Δ’ obtained by omitting a finite 

number of points     from an open disc Δ. If f(z) satisfies the condition 

 i                     for all i then  ∫        
 

 holds for any closed curve γ 

in Δ’. 

Proof:   Let O be the centre z0 = x0 + i y0 and and P be any point inside Δ. We 

define F(z) by  F(z) = ∫       
 

 where we let the curve ζ not passing 

exceptional points. Assuming first that no     lies on the line x = x0 and y = y0 by 

letting ζ consists of three line segments as in the figure with the last segment is 

vertical and consider ζ’ with the last segment is horizontal ( F(z) is independent 

of the choice of the middle segment) 

` 

 

 

 

 

 

 

 

 

 

  

By Theorem 4 and Theorem 5 , ∫       
       

    

C 

A 
  σ 

          

FIG. 4-5 

 
C 

A 

D 

B 

P(x,y) 
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  ∫        ∫       
         

   

  ∫        ∫       
         

 

         ∫        ∫       
    

 

  It is easy to verify that  )(zif
y

F





,  
  

  
         Hence     

  

  
    

  

  
 

  F is analytic            is exact differential  

    ∫       
 

 = 0  for any closed curve γ. 

4.3  Cauchy’s Integral Formula  

 It enables us to study the local property of  an analytic function. 

. 

Lemma 8:  (The index of a point with respect to a closed curve) 

 If the piecewise differentiable closed curve   does not pass through the 

point a, then the value of the integral ∫
  

   

 

 
  is a multiple of      

Proof  

The equation of   is               

Let us consider the function      ∫
     

      

 

 
    

It is defined and continuous on the closed interval [   ] and it has the derivative  

      
     

      
                      when ever        is continuous  

Consider, 
 

  
[              ] 

                                    

                                        
     

      
 = 0 except perhaps at a finite 

number of points , (using (1)). 
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               = a constant = k (say)…….(2) 

When t = α,  h(α) = 0 .Therefore,                = k                 

Therefore, (2) becomes         
         

         
             

         

         
. 

When t = β ,          
         

         
 . Since γ is a closed curve, z(α) = z(β). 

Therefore,        .     h(β) is a multiple of 2πi. 

Hence, h(β) = ∫
       

       

 

 
  = multiple of 2πi. 

Therefore, ∫
  

    
 = h(β) = multiple of  2πi. 

 

Definition:  ( The index or winding number) 

 The index of the point a with respect to the curve   by the equation  

 ( ,a) =  
 

   
∫
  

    
.  It is also  called the winding number of   with respect to a. 

 

Properties of winding number: 

Property 1.  Prove that   (- ,a) = -   ( ,a) 

Proof: 

      (  ,a)  =   
 

   
∫

  

     
  =  - 

 

   
∫
  

    
 =  -   ( ,a). 

Property 2.   ( ,a)  = 0  for all closed curves γ in a disc ( or circle ) and for all 
points of a outside the disc. 

Proof:     
 

   
  is analytic inside the disc. ( as a lies out side the disc ) 

Therefore,   ∫
  

    
     for all closed curve γ in the disc. ( by Theorem 6) 

 ( ,a) =  
 

   
∫
  

    
 = 0. 

Remark:  As a point set γ is closed and bounded. Its complement is open. The 

complement of the point set γ can be represented as a union of disjoint region. 
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If the complement regions are considered in the extended plane, there is exactly 

one   which contains the point at  . Consequently, γ determines one and only 

one unbounded region. 

Property 3: 

           As a function of ‘a’ the index  ( ,a)  is constant in each of the region 

determined by  , and zero in the unbounded region. 

Proof: 

 Join a and b by a line segment not intersecting   outside the line segment       

log (
   

   
  is analytic whose derivative is   

 

   
 
 

   
. 

Therefore, ∫  
 

 

   
 
 

   
    = 0   ⇒ ∫

  

    
 = ∫

  

    
  

⇒
 

   
∫
  

    
 = 
 

   
∫
  

    
   ⇒   ( ,a) =  ( ,b). 

If | | is sufficiently large,    is contained in a disc | | <   < | | 

Therefore by Property (2),  ( ,a) =0 

⇒   ( ,a) = 0 in the unbounded region. 

NOTE 1: 

We know that,  ∫
  

    
 =     where C is a circle about a. 

⇒ when   = C , 
 

   
∫
  

    
 = 1   ⇒   ( ,a) = 1. 

 

Theorem  9: (The Integral Formula ) 

                Suppose that f(z) is analytic in an open set ∆, and let   be a closed 

curve in ∆ for any point a not on  .             
 

   
∫
      

    
 ----------->(A) 

where        is the index a with respect  to  . 

Proof:   Given f(z) is analytic in open set ∆. Also given that a closed curve   in 

∆ and a point a  ϵ  ∆ which does not lie on  . 

          Define F(z) = 
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This function is analytic for z ≠ a  and for z     it is not defined. 

But it satisfies the condition  i               i    [         ]                                            

                                                                                                                                                                                           

   Therefore  By theorem (7) ∫         
 

---------->(1) 

                ∫ (
         

   
)     

 
 

              ∫
      

   
 ∫

      

   
  

  
 

              ∫
      

   
     ∫

  

     
 

             ∫
      

   
                

 
 

         Therefore,              
 

   
∫
      

    
   

       If a      then          

      Since 
 

   
 is analytic in   then we h ve  ∫

      

   
    

 
[by Cauchy’s 

theorem for circular  disc] 

     Therefore              . Hence equation (A) is true for all a     

Note: In the special case         , we have      
 

   
∫
      

    
  and this 

gives a representation formula to compute f(a) as soon as the value of f(z) on   

is given, together with the fact that f(z) is analytic in  .  This is called Cauchy 

representation formula. By the change of notation, we write       
 

   
∫
      

    
. This is referred to as Cauchy’s integral formula. 

Example 1 Compute ∫
    

 
    

| |  
 

Solution:           ∫
    

 
                

| |  
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           =     [since                             ] 

Example 2  Compute ∫
  

    | |  
 by decomposition of integral into partial 

fraction. 

Solution:               
 

    
 

 

          
 

                
 

          
 
 

   
 
 

   
 

                                    Put z=i,   
 

  
 and  z = -i,A= 

 

  
 

 ∫
  

    
 ∫ * 

 

  
 
 

   
 
 

  
 
 

   
+   

| |  | |  
 

                   
 

  
[ ∫

  

   
 ∫

  

   
]

| |  | |  
 

      
 

  
[                              ]  where C is the circle, |z| = 2. 

      
   

  
[    ]   . 

Example 3. Compute ∫
|  |

|   | | |  
 under the condition | |   . 

Solution:   Given   | |       ⇒       ⇒                                                                                                                     

          ⇒   ̅̅ ̅              Then  |  |       ̅̅ ̅          

             |  |          
  

     
    

     

 
 

  ∫
|  |

|   | 

 

| |  
    ∫

  

        ̅  ̅ 

 

| |  
 

                         ∫
  

    ̅  ̅    ̅   ̅ 

 

| |  
 

                         ∫
  

  | |   ̅    ̅   ̅ 

 

| |  
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                         ∫
  

[     ̅     ̅    ̅ ]
  

 

| |  
                    [   | |    ] 

                         ∫
  

      ̅         ̅  

 

| |  
 

                         ∫
  

         ̅      

 

| |  
 

               ∫
  

          ̅  

 

| |  
 

                     
  

 ̅
∫

  

     (  
  

 ̅
)

 

| |  
   

 

     (  
  

 ̅ )
 
 

     
 

 

(  
  

 ̅ )
 

   .  
  

 ̅
/         

Put    ,     (  
  

 ̅
)    

 

 ̅
 | |      and    

 ̅

| |    
 

Put   
  

 ̅
      (

  

 ̅
  )   (

   | | 

 ̅
) and    

 ̅

   | | 
                                                           

 ∫
|  |

|   | 

 

| |  

 
  
 ̅
∫

 

     
 

 

(  
  

 ̅ )
    

 

| |  

 

                                  
  
 ̅
[ ∫

  

   
  ∫

  

  
  

 ̅

 

| |  

 

| |  

] 

 
     

 ̅
0                .  

  

 ̅
/  .
  

 ̅
/1 

                                 
    

 ̅
*          (  

  

 ̅
)+  ⟶     where C is | |    
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Since , | |         ⇒ | |           | |    

Case (i)   If | |   ⇒ a lies with in the circle C. 

                  |
  

 ̅
|  
  

| |
 
  

 
   Therefore 

  

 ̅
 lies outside the circle C. 

 Therefore           (  
  

 ̅
)    

Therefore     becomes ∫
|  |

|   | 

 

| |  

=
    

 ̅
        = 

    

 ̅
                    

       
    

 ̅
 
 ̅

| |    
         [ | |   ] 

                                            = 
   

   | | 
 

Case (ii)   If | |      ⇒  a lies outside the circle C. 

|
  

 ̅
|  
  

| |
 
  

 
         

⇒
  

 ̅
 lies inside the circle C.   ⇒               (  

  

 ̅
)     

 Therefore     ∫
|  |

|   |

 

| |  
=
    

 ̅
   (  

  

 ̅
) 

   
    

 ̅
 
 ̅

   | | 
      

   

| |    
 

HIGHER DERIVATIVES: 

 The Cauchy integral formula gives us an ideal tool for the study of the local 

properties of an analytic function. 
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Lemma 10:  Suppose that      is continuous on the arc    Then the function , 

      ∫
      

      

 

 
 is analytic in each of the region determined by    and its 

derivative is   
             . 

Proof:   We first prove that   (z) is continuous. 

Let    be a point not on   and choose the  neighborhood |    | <   so that it 

does not meet  . Choose the restricted neighborhood |    | < 
 

 
.   Then for all             

          |   | = |         |  = |             |   

                                                              |    | – |    |     
 
 ⁄  =   ⁄  

  Therefore,   |   |     ⁄           ………………………(1) 

  (z)  -    (    = ∫
      

      
 - ∫

      

       
 

                       =∫
    [(            ]  

            
 

                      = ∫
            

            
 

|   z           | = |∫
            

            
| 

                                ∫
|    ||    ||  |

|   ||    | 
 

                              = |    | ∫
|    ||  |

|   ||    | 
 

                                  
|    |

 

 
. 
 

 
 M ∫ |  |

 
        where  |    |    M 

  |   z           |    |    |
      

  
L, where L=∫ |  |
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As   z       |   z –       |    

     z   is continuous at    . Since    is arbitrary ,    z   is continuous for all 

z not on  . 

To Prove:      z  is analytic. 

   z            = (    ) ∫
       

            
 

 
                    

      
    = ∫

       

            
 

  i     
                

      
 = ∫  i 

    
  
       

            
 

 i     
                

      
 = ∫

       

      
  
       ’(  ) =   (  ) 

  The derivative of   ( ) exists at    and  since    is arbitrary,     z  is analytic 

for all z. 

The general case is proved by induction. 

Suppose      z  is analytic and         z  = (n-1)    z  

Consider    z           = ∫
      

       
 - ∫

      

      
  
  

                                          = ∫
            

           
  
 - ∫

      

            
    

 

                                          = ∫
                

           
  

 - ∫
      

            
    

 

                             = ∫
      

           
    

 + ∫
            

           
  
 -  ∫

      

            
    

 

                          = ∫
      

           
    

 - ∫
      

            
    

 + ∫
            

           
  
   …(2) 
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  Take G( ) = 
    

      
 ,  (2) becomes, 

    z           = ∫
      

         
 - ∫

      

      
    

 +       ∫
      

       
  …….(3) 

Let     (z) = ∫
      

       
 

Therefore  (3) becomes 

   z            =      (z) -     (     + ∫
            

       
 

By induction hypothesis applied to G( ), 

    (z)       (    as z      and the factor of z -    is bounded in a 

neighborhood of        [ as      (z)  is continuous] 

Therefore     z             0 as z     . 

    z               z  is continuous at a point     

To Prove:     z  is analytic 

            

     
 = 
                 

     
 + ∫

      

       
 

                  =   
                 

     
 + ∫

      

           
  
 

When  z       ,           =         ) + ∫
      

      
    

 

                                      =         ) +          

                        = (n-1)        +         ….(4) [            ) = (n-1)       ] 

        ∫
      

      
  
    = ∫

      

            
  
  = ∫

      

      
    

 =         
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Therefore     becomes,    
                                         

Since    is arbitrary,        is analytic and    
             . 

 

Lemma: 11     Prove in detail an analytic function has derivatives of all orders 

(or)      An analytic function defined in a region Ω has derivatives of all orders 

and these are analytic in Ω. 

Proof:  Let a   Ω and f(z) be analytic in Ω.  Consider a  -neighbourhood ∆ 

about  a and in ∆, for all z inside C,  (C, z) =  (C, a) = 1 

        Hence by Cauchy’s Integral Formula,   f(z) =  
 

   
 ∫

       

      
 

By the above Lemma 10, the integral on the R.H.S is analytic function where  

derivative is ∫
       

       
 . Therefore,        

 

   
∫
       

       
 

 By the same lemma, the integral on the R.H.S is analytic function. Therefore, 

whenever f(z) is analytic in Ω then       is also analytic in Ω. 

         Therefore,        
  

   
∫
       

       
 

      

            
  

   
∫

       

         
  are all analytic functions. 

 

Theorem 12 (Morera’s Theorem) 

 If f(z) is defined and continuous in a region Ω, and     ∫         
 

 for 

all closed curve      Ω, then f(z) is analytic in Ω. 
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Proof:  Given ∫         
 

 for all closed curve      Ω. 

   =>  ∫       
 

, with continuous f, depends only on the end pts of   . 

=> f  is the derivative of the analytic function in Ω. 

=> f  is analytic in Ω.  [by lemma 11] 

 

Theorem 13 (Liouvilles’s theorem) 

 A function which is analytic and bounded in the whole  plane must reduce 

to  a constant. 

Proof:  Let a   Ω and C is any circle of radius r with centre a [         for 

all z inside of C] 

Now, f(a) = 
 

   
∫
      

      
 

                 
 

   
∫
      

       
      [by lemma 3] 

Therefore, |     |  
 

  
∫
|    | |  |

|   |   
  

                                     
 

  

 

  
 ∫ |  |
 

  where |z-a| = r and |f(z)|    for all z Ω 

. 

                                     
 

    
        = 

 

 
 

 This is true for all circle with centre a.  Letting r     => |     |    

                                   =>          for all a.  => f(z) is a constant. 
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   Theorem 14 ( Fundamental theorem of Algebra ) 

 Every polynomial of degree   1 has atleast one root. 

Proof:   Let us assume that the polynomial P(z) is of degree n   1 has no root. 

Therefore, P(z) never vanishes in the complex plane. 

=> 
 

    
 is analytic everywhere  => 

 

      
          

=> For  every    > 0 there exists a    > 0 such that |
 

    
|    for |z| >   

Since 
 

    
 is continuous in the bounded closed domains |z|    . 

Therefore, there exists a number K such that |
 

    
|        | |     

Let M = max(      => |
 

    
|    for all z   Ω 

Therefore,  by Leouvilles theorem, P(z) is constant. 

This is a contradiction.[since P(z) is not a constant] 

P(z)  must be zero for at least one value of z. 

=>The equation P(z) must have at least one root. 

 

Theorem 15 (Cauchy’s Estimate) 

 Let f(z) be analytic in  a region Ω and consider a circle C , |z-a|=  

contained in Ω.  If  |f(z)|   M on C  then |     |  
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Proof:  We know that       
  

   
∫

      

         
 

                                    =>|     |  
  

  
∫
|    ||  |

|        | 
   

           Given |f(z)|    on C and |z-a| =   

                        =>|       |  
  

  

 

    
∫ |  |  

  

   
 
 

     
    

   

  
 

                This is known as Cauchy’s Estimate. 
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UNIT V 

LOCAL PROPERTIES OF ANALYTIC FUNCTION 

5.1 Removable singularities, Taylor’s Theorem: 

                Cauchy’s integral formula remains valid in the presece of a finite 

number of  exceptional points, all satisfying the fundamental condition of 

theorem 5, provided that none of them coincides with a. 

                 Cauchy’s formula provides us with a representation of f(z) through an 

integral which in its dependence on z as the same character at the exceptional 

points as everywhere else. Points with this character are called removable 

singularities. 

Theorem 1: 

  Suppose that f(z) is analytic in the region Ωʹ obtained by omitting 

point a from a region Ω.  A necessary and sufficient condition that there exists 

an analytic function in Ω which coincides with f(z) in Ωʹ is that                   

 i                 The extended function is uniquely determined. 

Proof:  Suppose f(z) is analytic in Ωʹ and suppose there exists an analytic 

function F(z) in Ω such that F(z) = f(z) in Ω’. 

To prove:   i                

Now, F(z) is analytic in Ω     => F(z) is continuous on Ω. 

    => F(z) is continuous at a in Ω  => given      there exists     such that 

|F(z) - F(a)  | <    whenever |z - a|  <   -------->(1) 

Now, F(z) = f(z) in Ωʹ[i.e. z ≠ a ] 

Therefore, (1) becomes |f(z) - A | <    whenever |z - a| <   where A = F(a) 

                   i            [ since F(a) =  i               i        ] 

And    i               i          i         
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                                           =0.A=0 

Let                be the extended function in Ω where z ≠ a 

            ,             (i.e. in Ωʹ)  (i.e. when z ≠ a,            ) 

Moreover,   i                    i               

 Therefore        i          =        .  Then             for all z in Ω.  

Therefore, the extended function is unique. 

Conversely,  Let a be an exceptional points and  i                

We draw a circle C about a so that C and its inside are contained in Ω. 

 Therefore    by Cauchy’s Integral Formula, f(z)  
 

   
∫
      

    
 for all z≠a. 

But the integral on the R.H.S represents an analytic function of z throughout the 

inside of C. 

Consequently, the function which is equal to f(z) for z ≠ a and which has the 

value 
 

   
∫
      

    
  for z = a, is analytic in Ω and denote it by f(a). 

               Therefore  the extended function  is F(z)  {
              

      for z   
 

 

Theorem 2:  Taylor’s Theorem(Finite development)  

         If f(z) is analytic in a region Ω, containing a, it is possible to write 

          
     

  
      

      

  
         

       

      
         

          
 , where       is analytic in Ω. 

Proof:  Define      
         

   
 for z ≠ a 
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           i               i                

                                              [  f is analytic in Ω ⇒   continuous in Ω]                                                                                 

                                           

                         i          i    
         

   
            

Hence there exists an analytic function f1(z) = {
           

            
 

Repeating this process we can define an analytic function 

              2
           

   
     

  
           

 and so on. 

The recursive scheme by which       is defined and can be written in the form 

                                                            

                                                              

                                         

                                                                 

From these equations which are trivially valid for z = a and we obtain 

                          
              

                
       

Differentiating n times and setting z = a we get, 

                                                    
     

  
 for all n. 
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Note: 

      This finite development which is the most useful for the study of the local 

properties of f(z). 

       Since       is analytic in Ω , therefore by Cauchy Integral Formula, we 

have  

                                                 
 

   
∫
       

      
------------>(1) 

where C is the circle about a so that C and its inside are contained in Ω. 

 Using Taylor’s theorem,  

      
    

      
 
    

      
 

     

          
   

         

      

 

     
 

Therefore     becomes, 

      
 

   
∫ [

    

           
 

    

            
 

     

               
     -           

                                                           
     

   
      (   )     

]   

              
 

   
∫

      

            
 ∑

         

      

 
    

 

   
∫

  

            
 ------------>(2)  

             ∫
  

            

 

 

                                         ∫
  

           
 
 

   
∫

       

           
 

 

                                             
 

   
∫
[           ]  

           
   

 

   
∫  
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           = 0  identically for all z inside of  C. 

By lemma 10,     
              

When n = 1,    
          .   Therefore          

Similarly, we get         for all r ≥ 1 

Therefore  from (2)               
 

   
∫

      

            
 

This representation is valid inside of  C. 

  Zeroes and poles 

Theorem 3: 

          Let f(z) be defined and analytic in the region Ω. Suppose for some point       

a    Ω, f(a)  and the derivative       all vanish. Then f(z)    0 on Ω. 

Proof: 

           Let C be a circle with centre a  and radius R in the region Ω. 

By Taylor’s theorem, 

          
     

  
      

     

  
                   

   for all n 

where           is analytic in Ω. 

By hypothesis, we have f               
  ⟶      and     

      
 

   
∫

      

            

 

(i.e.) the circumference C has to be contained in  Ω  in which f(z) is defined and 

analytic. 



130 
 

f(   is continuous on C and C is compact. ⇒ f  is bounded on C 

(i.e.)  |f(  |    on C. 

      Therefore |     |  
 

  
∫

|    ||  |

|      ||   | 
 

                       
 

    
∫
|  |

|   | 
    [   |   |   ]--------------->(2) 

                       

         |   |  |       |  |           | 

                          |   |  |   |      |   | 

                 
 

|   |
   

 

  |   |
 

   Therefore     becomes, 

|     |  
 

       |   | 
∫ |  |
 

 

                                                         
 

       |   | 
     

                                                         
 

       |   | 
 

                              Therefore        |    |  |          
 | 

                                              |    |  |     ||   |
     

  
 

       |   | 
 |   |  

                                                    (
|   |

 
)
   

  |   |
 

 Therefore   
|   |

 
      ⇒  

|   |
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  ⇒        inside of C ---------->(3) 

  T.P              

  Let E1 be the set on which f(z) and all its derivatives vanish and E2 be the set 

on which the function (or) one of the derivatives different from zero. 

 is open,  is open because the functions and all its derivatives are 

continuous. 

Now,   Ω . But  Ω is connected  either  or  

Suppose , then the function and all its derivatives can never vanish at any 

point. This is  a  contradiction.    Ω   f(z) on Ω. 

DEFINITION: 

Let f(z)  0. If f(a)  0 then there exists a least positive integer h such that       

(a)  0.  Then a is the zero of order h. 

NOTE:  By the previous result, there are no zeros of infinite order. 

Lemma 4 If a is a zero of order h then f(z) (z) where (z) is 

analytic and (a) 0. 

Proof: Given: f(z) is analytic in Ω.  By Taylor’s theorem,  

f(z) = f(a) + (z-a) +……+  + (z)  

[ +…………..+  [ f(a)=f’(a)=……=
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f(z) = (z) where (z) =  +……..+ (z) is 

analytic. 

T.P: (a)  0 

(a)  =  .  

ISOLATED POINTS: 

THEOREM 5: 

The zeros of an analytic function which does not vanish identically are isolated 

(or) The zeros are isolated. 

Proof: Let f(z) be analytic function and let f(z)  0. Let z = a be a zero of order 

h.   f(z) = (z) where  is analytic and . 

Since  is continuous,  in a neighborhood of a and z = a is the only 

zero of f(z) in this neighborhood. 

COROLLARY 6: 

If f(z) vanish on a set with an accumulation point in Ω then f(z)    0 

Proof: Let S = {z Ω f(z) = 0} and S has an accumulation point a in Ω. 

 There exists a sequence ( ) in S such that  a as n  

 f( )  as n   . Since ( )   f( ) = 0  n    f (a) = 0.           

Claim: f(z) 0 

Suppose f(z) ≢ 0. But then zeros are isolated  



133 
 

       (ie) not isolated   not zeros  and accumulation point  not isolated 

a is an accumulation point  a is not a zero of f(z) 

 f(a)  0.This is a contradiction to f(a) = 0.Therefore f(z)  0 on . 

THEOREM 7 (UNIQUENESS THEOREM )  

If f(z) and g(z) are analytic in Ω and if f(z) = g(z) on a set which has an 

accumulation point in Ω, then f(z)  g(z) on Ω. 

Proof:  Given that f(z) = g(z) on a set which has an accumulation point in Ω 

 f(z) - g(z) = 0  (ie) (f-g)(z) = 0 on a set which has an accumulation point in Ω 

By previous corollary,  (f-g)(z)  0 on Ω     f(z)  g(z) on Ω.   

NOTE: 

1. If  f(z) 0 in a sub-region of Ω, then f(z)  0 on  

2. If f(z)=0 on arc  f(z) 0 on Ω 

3. An analytic function is uniquely determined by its values on any set with 

its accumulation point in the region of analyticity [refer uniqueness 

theorem] 

DEFINITION ( Isolated Singularity) 

Consider a function f(z) which is analytic in neighborhood of a except perhaps at 

a itself then the point a is called an isolated singularity. 

      In other words, f(z) shall be analytic in a region o < |z-a| <  then the point a 

is called an isolated singularity of  f(z). 

 DEFINITION: (Removable singularity) 

If the function is not analytic at ‘a’ but can be made analytic by merely assigning 

a suitable  value to the function at a point a in region Ω. 
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DEFINITION: (Regular) 

If a is the removable singularity and if f(z) is analytic in some(deleted) 

neighborhood a then f(z) is said to be regular at a. 

NOTE:  1. Regular is sometimes used as a synonym for analytic. 

1. If a is taken as a Removable singular point then we can define f(a), so that 

f(z) becomes analytic in the disc |z-a| < . 

DEFINITION: (Pole) 

If f(z) has an isolated singularity at z=a and f(z)  at z a.  Then f(z) is said to 

have a pole at z=a 

NOTE:  

1. If a is a pole of f(z), we said f(a)= there exists      such that f(z)  0 

for 0 <  |z-a| <  [Since f(z) is analytic in region 0 < |z-a| < ].  In this 

region the function g(z) =  is defined and analytic.  

      But the singularity of g(z) at a is removable and g(z) has an analytic 

extension with g(a) = 0. 

      Since g(z) does not vanish identically zero and so a is a zero of g(z) of 

finite order.  We write g(z) = (z) with (a) 0. 

      The number ‘h’ is called the order of the Pole and 

f(z) =  =   =  where  =  is analytic 

and different from zero in a neighborhood of a. 

DEFINITION:   If f(z) has a pole at z = a and f(z) = (z) where 

(z) is analytic and different from zero in a neighborhood of a.  Then h is the 

order of the pole of  f(z) at z = a. 
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DEFINITION: 

                  A function f(z) which is analytic in a region Ω, except for poles, is 

said to be meromorphic in Ω. 

NOTE: 

1. More precisely, to every a   Ω there exists a neighborhood |z-a|<  

contained in Ω, such that f(z) is analytic for 0 < |z-a |<  and the isolated 

singularity is a pole. 

2. By definition, the poles of a meromorphic function are isolated. 

3. The quotient  of two analytic function in Ω is a meromorphic function 

in Ω, provided that g(z) is not identically zero.  The only possible poles 

are the zero of g(z).  But a common zero of  f(z) and g(z) can also be a 

removable singularity.  In this case the values of  the quotient is 

determined by continuity.  The sum, the  product, the quotient of the two 

meormorphic functions are meromorphic. 

Detailed discussions of Isolated Singularity: 

Consider the condition, (i) |f(z)| = 0  

                                       (ii) |f(z)| =  for real values of ‘ . 

If (i) holds for certain , it holds for all larger  and hence for some integer m.  

Then f(z) has a removable singularity and vanish for z = a. 

Either f(z) ≡ 0, in which case (i) holds for all  or f(z) has a zero of 

finite order k.  In the later case it follows at once that 

(i) holds for all  > h = m - k 

(ii)   holds for all  < h.  

 The discussion shows that there are 3 possibilities: 

1) Condition (i) holds for all  and f(z) vanishes identically. 
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2) There exists an integer h  such that (i) holds for all  > h and (ii) for  h 

3) Neither (i) nor (ii) holds for any . 

CASE 1: Trivial 

CASE 2: h may be called the algebraic order of f(z) at a.  It is positive in the 

case of a pole and negative in the case of a zero and zero if f(z) is analytic but 

f(z) not equal to zero at a.  The order is always an integer.  In  the case of a pole 

of order h,  apply Taylor’s theorem to an analytic for f(z). We have, 

f(z) =  + (z-a) +  +………….+  +     

φ(z) , where φ(z) is analytic at z = a. 

For z ≠ a, we have 

f(z) = + +………….+  + φ(z)  

The part of this development which proceeds φ(z) is called the singular part of 

f(z) at z = a. 

Therefore   A pole has not only an order but also a well defined singular part. 

In the case (3) the point a is an essential singularity.  In the neighborhood of an 

essential singularity f(z) is at the same time unbounded and comes arbitrary 

close to zero. 

Note:  The difference of  two functions with the  same singular  part is analytic  

at a. 

CHARACTERIZATION OF THE BEHAVIOUR OF A FUNCTION IN 

THE NEIGHBORHOOD OF AN ESSENTIAL SINGULARITY: 

Theorem 8 ( WEIERSTRASS THEOREM) 

An analytic function comes arbitrarily closed to any complex value in every 

neighborhood of an essential singularity. 
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Proof:  If the assertion were not true, we could find a complex number A and a      

 > 0 such that |f(z)-A| >  in a neighborhood of a (except for z = a) 

For any  < 0, we  have then  i    |   |
 |       |    . Hence a would 

not be an essential singularity of f(z) – A. 

Accordingly, there exists a   with  i    |   |
 |       | = 0 and we are 

free to choose    >  0. 

Since  i    |   |
 | |   0    =0 [  |f(z)-|A|| ≥ |f(z)-A| ] 

  a would not be an essential singularity of f(z). 

This is a contradiction [ as a is an essential singularity of f(z)]. 

 

Theorem 9 (LOCAL MAPPING) 

Let  be the zeros of a function f(z) which is analytic in a disc ∆ and does not 

vanish identically, each zero being counted as many as its order indicates.  For 

every closed curve   in ∆ which does not  pass through a zero 

dz  where the sum has only a finite number terms not equal to zero. 

Proof:   Given that f(z) is analytic and not identically zero in an open disc ∆ and 

also given that   is a closed curve in ∆ such that f(z) ≠ 0 on  . 

Case 1: 

If f(z) has only a finite number of zeros in ∆, 

Let them be z0, z1, z2,…...   where each zero is repeated as many times as its 

order indicates. 

By the repeated application of Taylor’s theorem we have, 
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f(z) = (z- ) (z- )……………… (z- )g(z)  where g(z) is analytic and g(z) ≠ 0 

in ∆ 

Taking log on both sides, 

log f(z) = log(z- ) + log(z- ) +…………+ log(z- ) + log g(z). 

Differentiate with respect to z,  

 =  +  + ……………… +  +  

dz =  +  +…...+  + 

dz 

=  ( , )+  ( , )+……….+  ( , )+ dz 

  = (1)  

Since g(z) ≠ 0 and g(z) is analytic   (z) is analytic. 

Now,   is analytic in ∆ and   is a closed curve in ∆. 

By Cauchy’s theorem on a disc, dz=0 

 (1) becomes   =  

CASE 2: Suppose f(z) has infinitely many zeros in ∆. 

It is clear that   is contained in a concentric disc ∆’ smaller than ∆. 
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If f(z) ≢0 ,  it has only a finite number of zeros in ∆’. 

For, If there were infinitely many zeros they would have an accumulation point 

in the closure of  [By Balzano – Weierstrass  theorem]. This is impossible.  

The zeros outside of  satisfies  = 0 and hence do not contribute to the 

sum in (1).  Hence  the theorem. 

Observation 1:  = 
 

   
∫
     

     
   yields a formula for which the total 

number of zero enclosed by  .  

 For, Applying the transformation w = f(z).  Let 𝛤 be   image of γ under this 

transformation.   

                
 

   
∫
  

  
     

 

   
∫
     

     
    

                     =    = .  That is,   (𝛤,0)  = . 

If  each  ( , ) must be either be 0 or 1 then the formula in Theorem 9  

 = 
 

   
∫
     

     
   yields a formula for which the total number of zero 

enclosed by  .  This is evidently the case   is the circle. 

Observation 2:  Let a be an arbitrary complex value.  Apply Theorem 9 to  

f(z) - a. The zeros of f(z) - a are the roots of the equation f(z) = a and we denote 

them by (a). 

Therefore, by Theorem 9,   =  

But 
 

   
∫
         

       
 =
 

   
∫
      

    
     = 

 

   
∫
  

    
    =  (𝛤,a) 

    (𝛤,a)  =  . It is necessary to assume that f(z) ≠ a on  . 
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Observation 3:  If a and b are in the same region determined by  𝛤 then          

 (𝛤,a) =  (𝛤,b)         = .  If   is a circle, It follows 

that f(z) takes the values a and b equally many times inside of  . 

THEOREM 10 

Suppose that f(z) is analytic at , f( ) =  and that f(z) -  has a zero of order 

n at   If   > 0 is sufficiently small, there exists a corresponding δ > 0 such that 

for all a with |a -  < δ the equation f(z) = a has exactly n roots in the disc       

|z - z0| < ϵ. 

Proof: We can choose   so that f(z) is defined and analytic for |z- | ≤   and so 

that  is the only zero of f(z) - in this disc.  Let   be a circle |z- | =   and 𝛤 

its image under the mapping w = f(z). Since   Complement of the closed set 

𝛤, there exists a neighborhood |w -  < δ which does not intersect 𝛤.  It 

follows immediately that all values a in this neighborhood are taken in the same 

number of times inside  . The equation f(z) =  has exactly n coinciding roots 

inside of  , and hence every value a is taken n times.  It is understood that 

multiple roots are counted according to their multiplicity.  But if   is sufficient 

small, we can assert that all roots of the equation f(z) = a are simple for a ≠ .  

Indeed, it is sufficient to choose   so that (z) does not vanish for 0 < |z- | <  . 

 

 

 

 

 

 

 

 

        

 

   

  

z- plane 

  

   

  

  

w- plane 

FIG. 5.1        Local correspondence. 
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Corollary 11    

           A non constant analytic function maps open sets onto open sets. 

Proof:  Since the image of every sufficiently small disc |z- | <   contains a 

neighborhood  |w - | < δ (By Theorem 10 above) 

Therefore, f maps open sets onto open sets. Therefore, f is open map. 

Corollary 12 

     If f(z) is analytic at zo  with   (z0) ≠ 0.  It maps a neighborhood of z0  

conformally and topologically onto a region. 

Proof:  Given f
 
‘(z0) ≠ 0. Hence n=1, in this case there is a 1-1 correspondence 

between the disc │w - w0│< δ and an open subset  Δ of │z - z0│< ε. Since the 

open sets in the z-plane corresponds to open sets in the w - plane. The inverse 

function of f(z) is continuous . Then the mapping is topological.  But the 

mapping can be restricted to neighborhood of z0 contained in Δ. 

 .
.
. f ‘(z0) ≠ 0  =>  f is conformal. 

 

5.2 Maximum Principle 

Theorem 13  (The maximum principle) 

If f(z) is analytic and non constant in a region Ω, then its absolutely value       

│f(z)│has no maximum in Ω. 

Proof: If w0 = f(z0) is any value taken in Ω then  by  Corollary 11, there exists a 

neighborhood │w-w0│< δ contained in the image of Ω.  In this neighborhood 

there are points of modulus >│w0│.   

Hence │f(z0)│ is not the maximum of │f(z) │  . 

Alternative Proof for Maximum Principle: 
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Let z0 be any pt in Ω. Consider a circle γ with centre z0 at radius r. 

=>   = z0 + re
iζ 

,  0 ≤ ζ ≤ 2π   =>     = ire
iζ 

 dζ on γ 

By Cauchy Integral formula,  f(z0) = 
 

   
∫
      

     
   = 

 

   
∫
 (     

  )       

    

  

 
 

                                  = 
 

   
∫  (     

  )  
  

 
 ……….(1) 

  This formula shows that the value of an analytic function  at the centre of a 

circle is equal to arithmetic mean of its values on the circle subject to the 

condition that the closed disc │z-z0│≤ r is contained in this region of analyticity. 

(1)   => │f(z0)│≤  
 

 
 ∫  (     

  )  
  

 
 ----------(2) 

Suppose that │f(z0)│ were a maximum  => │f(z0+re
iζ
)│≤│f(z0)│ 

If  the strict inequality hold for a single value of ζ it would hold, by continuity 

on a whole arc. Then the mean value of │f(z0) + re
iζ
)│ would be strictly less 

than │f(z0)│.  Therefore,    (2) => │f(z0)│<│f(z0)│ 

This is a contradiction. Therefore,  f(z) must be constantly equal to │f(z0)│ on 

all sufficiently small circles │z-z0│= r  and hence in a neighborhood of z0. => 

f(z) must reduce to a constant. 

Theorem 13’    

 If f(z) is defined and continuous on a closed and bounded set E and analytic on 

the interior of E, then the maximum │f(z)│ on E is assumed on the boundary of 

E. 

Proof:   Since  E is compact,  │f(z)│ has a maximum on E . 

Assume  │f(z)│ has a maximum at z0. 

Case (i):   If z0 is on the boundary, there is nothing to prove. 
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Case (ii):  Assume  z0 is an interior point of E. 

Then │f(z0)│ is also a maximum of │f(z)│ in a disc │z-z0│< δ contained in E. 

This is not possible, unless f(z) is constant in the component of the interior of E 

which contains z0. 

=> By the continuity that │f(z)│ = the maximum on the whole boundary of 

that component. 

This boundary is  non-empty and it is contained in the boundary of E. 

 

Therefore  the maximum is always assumed at  boundary points. 

Schwarz’s   Lemma: 

Theorem 14 : If  f(z) is analytic for │z│< 1 and satisfies the conditions 

│f(z)│≤ 1, f(0) = 0, then  │f(z)│≤│z│ and │f
 
‘(0)│≤ 1. If  │f(z)│=│z│ for 

some z ≠ 0, or if │f
 
‘(0)│= 1, then f(z) = cz and with a constant c of  absolute 

value 1. 

Proof:  Since f(z) is analytic in the disc │z│< 1, Taylor’s expansion about the 

origin gives f(z) = c0 + c1z + c2z
2 
+………+ cnz

n 
+…...... 

By hypothesis, f(0) = 0  so that  c0 = 0 

. 
.
 . f(z) = c1z + c2z

2 
+…...............+ cnz

n 
+……….  -----------(1) 

Consider the function, f1(z) =   
    

 
 = c1+ c2z +………   in the unit disc │z│<1,  

f1(z) is analytic.      If we set  f1(0) = c1 =  f ‘(0) 

(i.e) f1(z) =  {

    

 
      

                                    

Let z = a be an arbitrary point of the unit disc.  
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We choose ‘r’  such that │a│< r < 1 

Since │f(z)│≤ 1, on the circle │z│= r,  we have │f1(z)│=  
      

   
 ≤ 
 

 
  ---------(2) 

By the maximum principle , the inequality  (2)  also holds in this disc │z│≤ r 

  f       
    

 
 ≤ 
 

 
   If we let  r → 1  we see that │f1(a)│≤ 1 

     (i.e) │
    

 
│≤1  (or)  │f(a)│≤ │a│ 

Since a  is arbitrary ,we have │f(z)│≤ │z │      ……….(3) for which │z│< 1 

[ In particular, |     |  | 
    |     (given)] 

If the equality in (3) holds at a single point it means that       attains its 

maximum and hence that       must reduce to a constant [by maximum 

modulus principle] 

Therefore |     |    can hold only when       = 
    

 
 =        (i.e)       

     where    is a real constant or         where | |  |   |   . Hence the 

theorem. 

Cycles and chains 

Definition : Chains  

Consider the formal sums                 which need not be an arc 

and we can define the corresponding integral ∫    
         

 ∫    
  

 

∫      
  

∫    
  

 such formal sums                 of arcs are 

called chains. 

Definition : Cycles 

A chain is a cycle if it can be represented as a sum of closed arcs (or) a 

chain is cycle if and only if  in any representation the initial and end pts of the 

individual arcs are identical in pairs. 
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Definition : 

A region is simply connected if its complement with the extended plane is 

connected 

 

 

Definition: (Homology)  

A cycle   in an open set Ω is said to be homologues to zero with respect to Ω if       
ε(γ,a) = 0 for all points a in the complement of Ω. 

 

The General statement of Cauchy’s Theorem 

 If f(z) is analytic in Ω then ∫         
 

 for every cycle γ which is 

homologues to zero. 

 

5.3 The calculus of Residues 

   Now the determination of line integrals of analytic functions over a closed 

curve can be reduced to the determination of a period.  We are thus possessing 

of a method which in many cases permits to evaluate integrals without resorting 

to explicit calculus. 

   In order to  make this method more systematic a simple formulation known as 

the calculus  of  residues  was introduced by Cauchy. 

Residue Theorem:   

                 All the results which were derived as consequences of Cauchy’s 

theorem for a  disc remains valid in arbitrary region for all cycles which are 

homologues to zero. 

   Cauchy’s Integral formula can be expressed in the form, if f(z) is analytic in a 

region Ω. 

ε (γ,a) f(a) = 
 

   
 ∫
    

    
  dz  for every cycle γ which is homologus to zero  in Ω . 

We now turn to the discussion of a function f(z) which is analytic in a region  Ω 

except for isolated singularities. 
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Let us assume that there are only  finite number singular points denoted by 

 a1 ,a2 ,…….an.  The region obtained by  excluding the points aj will be denoted 

by Ω
’ 
. To each aj, there exists a δj > 0 such that the doubly connected region is 

contained in Ω
’
.  Draw a circle Cj about aj of  radius less than δj . 

Let Pj =∫         
  be the corresponding period of f(z). 

The particular function 
 

    
  has the period  2πi. 

 Therefore   Set Rj = 
  

   
 ---------(1) 

Now, f(z) -  
  

    
 has a vanishing period. The constant Rj which produces this 

result is called the residue at the point  aj. 

Definition:   The residue of f(z) at an isolated singularity a is the unique 

complex number R which makes f(z) -  
 

   
 the derivative of a single valued 

analytic function in an annulus 0 <│z-a│< δ. 

Note:   Notation R =        
   .  Since Rj = 

 

   
 ∫       
  

  where Cj  is the circle 

about the isolated singular point aj ,          
    = 

 

   
 ∫       
  

   

Theorem 15:  (Residue Theorem): 

Let f(z) be analytic except for isolated singularities  aj in a region Ω then  

 
 

   
 ∫       
 

 = ∑                 
    for any cycle γ which is homologus to 

zero in Ω and does not pass through any points aj. 

Proof:  

 Case(i):   Suppose there exists only finite number of isolated singularities (say) 

  ,   , …….,   . 
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Define  Ω
’ 
= Ω - ⋃     

 
   .  Therefore  f(z) is analytic in the region Ω’

. 

Let γ be a cycle homologues to zero in Ω and does not pass through any one of  

the aj’s.  

Let Cj be a circle with centre aj and radius > 0. Then 
 

   
 ∫       
  

  is defined 

as the residue  of f(z)  at a singularity  aj .  Consider a cycle 𝛤 = γ - ∑         Cj, 

Now, ε(𝚪,ak) = ε(γ-∑         Cj, ak) = ε(γ, ak) - ε( ∑         Cj ,ak) 

                     =  ε(γ, ak)- ∑         ) ε(Cj,ak) =  ε(γ,ak) - ε(γ,ak) ε(Ck, ak)  

                      = ε(γ,ak) - ε(γ,ak) = 0 

Thus,  ε(𝚪,ak) = 0 

Let  a does not belongs to Ω.  ε (𝚪,a) = ε(γ-∑         Cj, a)  

                   = ε(γ,a) - ε(∑         Cj  ,a)= ε(γ,a) - ∑          ε(Cj ,a) = 0 – 0 = 0 

Therefore   is a cycle homologues to zero which does not pass through the aj’s. 

(i. e)  𝚪 is a cycle homologues with respect to Ω
’.
 

Therefore   by Cauchy general theorem, 

                                ∫       
 

 = 0  =>  ∫        
  ∑           

 = 0 

                                =>∫         
 

=  ∑         ∫       
  

  

                               =>
 

   
∫       
 

   =   ∑         
 

   
 ∫       
  

 

                                                              =∑                 
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Case (ii): Suppose  there  exists  infinitely many isolated singularities to Ω.  The 

set of points a such that ε(γ, a) = 0 is open . Since γ is compact  there is a large 

circular disc D such that γ     and for a   ~ ,  ε(γ,a) = 0. 

 Then the set of points b such that  ε(γ,b) ≠ 0  equal to   -A =      where  

A = {a       ε(γ,a) = 0}. 

Therefore   - A is a closed and bounded set and hence    - A is compact. 

Hence, there exists only a finite number of  aj such that  ε(γ,aj) ≠ 0   and for this 

aj  case(i) applies. 

Therefore 
 

   
∫       
 

 = ∑                 
       

Note1: In the applications,  it is frequently the case that each  ε(γ,aj)  is either 0 

or 1 .  we have ∑         
   

   ,where the sum is extended over all singularities 

enclosed by γ. 

2) The residue of f(z) at a simple pole z = a is         
   f(z) = 0. 

Problem 1: 

Find the poles and the residues at their poles of the following 

function     
  

          
. 

Solution:     Let f(z) = 
  

          
 

Poles of f(z) is given by (z-a)(z-b)=0      (i.e) z = a or z = b 

         (i.e.) z = a and z = b are the poles of f(z). 

          Residue of f(z) at the simple pole z = a 

                                                 i         
  

          
   

  

   
 

Residue of f(z) at the simple pole z = b 
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                                             i                 

                                              i         
  

          
    

  

   
  

When b = a,          
  

      
         is a pole of order 2. 

We know that if z = a is a pole of order h and if    

f(z) =        
            

         then               

By Taylor’s theorem for         

                      
     

  
                

  

                   
  

  
                

  where       is analytic 

Divide by        

             
  

      
 

  

      
 
  

     
       

        ∫
  

      
   ∫

  

      
   ∫

  

     
   ∫            

 where C is the     

                                                                                  circle with centre a.            

                                ∫
  

    
                

                                    

        
  

      
 
 

   
∫       
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The Argument  principle: 

Theorem 16: 

       If f(z) is meromorphic in Ω with zeros     and poles bk.  Then 

 
 

   
∫
     

    
   ∑  (    )  ∑           

 for every cycle   which is 

homologues to zeros in Ω which does not pass through any of the zeros or poles. 

Proof:   Let    be the zero of f(z) of order h. 

   Therefore                   where   (  )     and       is analytic. 

Taking log  and differentiate with respect to z. 

          
      

    
 

 

      
 
  
    

     
 

  Therefore      is a simple pole of  
  

 
 with residue h. 

      Let    be the pole of f(z) of order  . 

                   
       where         and      is analytic. 

Taking log and differentiate with respect to z 

  
     

    
  

 

    
 
     

    
 

 Therefore      is a simple pole of the function 
  

 
 with residue –   . 

By Residue theorem, we have 
 

   
∫
     

    
   ∑  (    )  ∑           
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Corollary 17 (Rouche’s theorem ) 

       Let   be a cycle homologous to zero in Ω and such that        is either zero 

or one for any point z not on  .  Suppose that f(z) and g(z) are analytic in Ω and 

satisfy the inequality |         |  |    |         Then f(z) and g(z) have the 

same number of zeros enclosed by  . 

Proof:  Given that f and g are analytic in Ω.  

Further, f and g do not have a zero on  . 

For, f  has a zero a on                    

By hypothesis,  |         |  |    |    |    |   0.This is a contradiction.                                 

  Therefore  f  has no zero on  .  Similarly, g has no zero on  . 

   f and g can not have a zero on  . Let      
    

    
 

            is meromorphic  in Ω. 

      Let N =    number of zeros of F(z) enclosed by  . 

                 =   number of zeros of g(z) inside of  . 

      Let P  =   number of poles of F(z) enclosed by  . 

                  =  number of zeros of f(z) inside of  . 

  Therefore, By the Argument principle,     
 

   
∫
     

    
  

 
 

                                                                    where   = F(   

Given |         |  |    |          
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         |  
    

    
|                 

=>│1 - F(z)│< 1 , z     

=>           which is  contained in the open unit circular disc of centre one 

and radius 1. 

=>            => N - P = 0  => N = P 

=> Number of  zeros of g (z) inside of   = Number of zeros of f (z) inside of   

  Therefore   f and g have the same number of zeros enclosed by  . 

REMARK:   f(z) and g(z) are interchangeable. Therefore, we have the condition       

│ f(z) – g(z) │ < │g(z) │ => f and g have the same number of zeros. 

Take                  =>                   

  Therefore  │            z   

  Therefore, g(z) and g(z)+                                       

  Therefore    │            z    

then g(z) and g(z)+                                     

Problem 1: 

 How many roots does the equation z
7
-2z

5
+6z

3
-z+1=0 have in the disc │z│<1 

Solution: 

Of the coefficients 1,-2,6,-1,1,the coefficients 6 has the maximum absolute 

value. 

To use Rouche’s theorem , 
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Let f(z) = 6z
3

  and g(z) = z
7 
- 2z

5 
– z + 1  

On │z│=1, │f(z)│= 6 z
3
=6 

                     │g(z)│= │ z
7 
- 2z

5 
– z + 1 │ 

                         < │z│
7
+2│z│

5
+│z│+1 = 5 

=>│g(z) │< │f(z) │. But f(z)= 6 z
3 
 has 3 roots z = 0 

By Rouche’s theorem, 

=> g + f and f have the same number of zeros inside the circle  │z│=1 

=> g+f = z
7
-2z

5
+6z

3
-z+1 = 0 has 3 roots inside of the circle │z│< 1 

Problem 2. How many roots of the equation z
4 

- 6z + 3 = 0 have their modulus 

between 1 and 2. 

Solution:  Consider the circle │z│= 1. Of the coefficients 1,-6,3  

6 has the maximum absolute value. 

To use the Rouche’s theorem, take f(z)= -6z and g(z)= z
4
+3 

On │z│=1 , │f(z)│= 6│z│= 6 and │g(z)│= │ z
4
+3│≤│ z

4
│+3  = 4 

  Therefore |    |  |    |  

But f(z) = 6z has one root  z = 0 inside of | |=1 

By Rouche’s theorem  

=> g+f  and f have the same number of zeros inside the circle | |    

=>  g+f  =  z
4
-6z+3=0 has one root inside the circle | |    
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Consider the circle | |    

Let f(z) = z
4      

and  
 
g(z) = -6z+3 .  On | |      

|    |  | |4 
= 16  and   │g(z) │≤  6│z│+3 ≤ 15 

Therefore,  │g(z) │< │f(z) │.   But f(z) = z
4 

Therefore, f(z) has 4 roots z = 0 inside the circle | |     

Hence by Rouche’s theorem , 

f + g  and f  have the same number of zeros inside of  | |     

Therefore, f(z) + g(z) = z
4 
- 6z + 3 = 0 has 4 roots inside of | |      

Therefore, the number roots lying between | |    and | |    is 4 – 1 = 3 

5.4 Evaluation of  definite integrals: 

Type 1: 

∫    os    sin                           
  

 
   os    sin       is a rational 

function  of  os       sin     

Put z =    .  dz =               
  

     
 =
  

  
 

 os   
        

 
 , sin     

        

  
 

 os   
     

 
 , sin     

     

  
 

Also │z│=1 (i.e) C is the unit circle  │z│= 1 

∫    os    sin        
  

 
∫  (

     

 
  
     

  
)
  

   
   =   ∫             

  =2                                                   



155 
 

Problem 1 

        Compute     ∫
  

      

 

 
 ,   a > 1 

Solution:  ∫
  

      

 

 
 = ½ ∫

  

      

  

 
 

 sin e  os                                                          

  Put  z =         dz = i   dɵ => dɵ = 
  

    
 =  
    

  
 

∫
  

      

  

 
   =   ∫

     

  
 

 
   
 

 
  
   where  C is the unit circle |z| < 1 

 

                      =  ∫
  

   
        

  
  
 

                      = -i2∫
  

         
 

= -2i∫        
 

 where f(z) = 
 

        
 

 The poles of f(z) are given by            

                 Z =  
              

 
 

                  = 
             

 
 

α = - a +             = - a -       

αβ =              . But |α||β|=1  => |α| = 
 

| |
 

Now, |β | > 1   =>  
 

| |
 < 1  =>  |α| < 1 

                         α lies inside the circle C,  |z| = 1. 



156 
 

   es                       
       =    

    

               
    

                = 
 

   
 = 

 

             √      
 = 

 

         
 

  I = 
 

 
 ∫       
 

 

       =
 

 
.2πi [sum of the residue of the poles with in C] 

      = 4π (        
    ) =   

 

        
 

      Therefore, ∫
  

      

  

 
 = 

  

       
 

∫
  

      

 

 
 =1/2 ∫

  

      

  

 
  = 1/2 

  

       
 = 

 

       
 

Deduction:   ∫
  

      

  

 
 = 

  

       
 

Diff. w.r.to a ,  -∫
  

         

  

 
 =-1/2

  

      
 
 

  .2a 

∫
  

         

  

 
 = 

   

      
 
 

 

Problem 2 

Evaluate   ∫
  

       

 

 
 

  , |a| > 1  

Solution: 

       Take I =  ∫
  

         

 

 
 

 = ∫
  

   
       

 

 

 
 

 

Put ɵ = 2x. when x = 0 , ɵ = 0 and when x = 
 

 
 , ɵ = π then dɵ = 2 dx    
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Let  I =∫
  

         

 

 
 = ½ ∫

  

         

  

 
 

Put z =     , dz = i   dɵ  and dɵ = 
  

  
 

Let C be the unit circle |z | = 1 

I = ½ ∫
  

  

      (  
 

 
)   

 

   =1/2∫
  

  .
        

 
 
 

 
/

 
 

=-1/i∫
  

              
 

=i∫
  

             
 

=i∫         
 

where f(z) =  
 

            
 

= i 2πi (sum of the residues of f(z) at the poles with in C). 

The poles of f(z) is given by                

      Z =  
       √           

 
  = 
         √             

 
 

     =  
       √      

 
       = 2a+1 ±2 √       

Let  α = 2a+1+2√                β   =   2a+1- 2√       

|α| = |2a+1+2       |                  |α||β| = 1   

=>  |β| = 
 

| |
 < 1, |β|  < 1.   Therefore   lies  with in the circle    | |    
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     i              

        i         
 

          
 

       
 

     
      

 

              (             )
        

 

       
 

    ∫       
 

 
 

          (sum of the residue at the poles with in C) 

              
            (

 

       
)       

 

      
 

Note: 

If      is a pole of order m then        
    

 

      

    

     
             

For, 

Since a is a pole order m,                   
  

   
    

  

      
 

                    
         

             
         

 i 
   

    

     
                                       

   Therefore       
 

      

    

     
             

   Therefore        
       

 

      

    

     
             

Problem 3.       Apply the Cauchy’s  residue theorem and prove that  

         ∫      
  

 
 os sin         
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Solution:      ∫      
  

 
 os sin        

     Real part of ∫      
  

 
               

     Real part of ∫            
  

 
              

     Real part of ∫   
    

 
        

Put  z      ,    
  

  
 and C is  a unit circle | |    

   Real part of ∫   
  

 

 

  
  

  
 

     Real part of
 

 
∫
  

    

 

 
   

     Real part of
 

 
∫       
 

 
     where       

  

    
 

      Real part of
 

 
                                               

Poles of      

     is a pole of order     lies within C. 

         
     i    

 

  

  

   
     f(z)) =  i    

 

  

  

   
     .

  

    
) = 
 

  
. 

I = R.P.    
 

 
 ∫       
 

 =  R.P.    
 

 
.2  (Sum of residues at the poles within C) 

  =  R.P 2 . 
 

  
 = 
  

  
 

Lemma 18: 

If   i 
   

(z-a)f(z) = A and if C is the arc          of the circle |   | = r then 

 i  ⟶ ∫        
 = iA(  -  ) 
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Proof: 

 i 
 ⟶ 

(z-a)f(z) = A  ⇒ given   0 ,there exists      > 0 depending on   such that  

|           |<   for |   | <    . But  |   | = r 

Therefore, if r <    then |           | <   on the arc C. 

Therefore, (z-a)f(z) = A +   where | | <    ⇒ f(z) = 
   

   
 

Therefore,  ∫       
 

  ∫
   

    
   = (A+  ) ∫

  

    
 

                                                        =  (A+  ) ∫
        

    

  
  

 where |z| = r. 

                                                        = i(A+  )(    -   ) 

                                                        = i A(   -   ) + i  (    -   ) 

|∫                    
|   |           | = | ||       | <      -     

Since     ⇒    0. Therefore,   i  ⟶ ∫        
 = iA           

 

NOTE: 

1)  In particular, if A = 0 then     i  ⟶ ∫        
  = 0 

2)      i 
 ⟶ 
 z-a)f(z) =       f(z) 

Lemma 19: 

If  C is the arc          of the circle | | = R then  i  ⟶      =A then  
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 i 
 ⟶ 
∫       
 

 = iA          

Proof: 

   i 
 ⟶ 

zf(z) = A.Therefore we choose R so large that |zf(z) – A| <   

 On the arc C,  (i.e) zf(z) = A +     where | | <   

Therefore ∫       
 

 = ∫
   

     
.Ri      

                                   =i(A+  ) (         

    = Ai         +  i (         

|∫                   
 

|   |           | 

                                                = | |(   –      <  (   –   ) ⟶       ⟶   

Since  ⟶   and consequently R ⟶   

Therefore,  we get  i  ⟶ ∫         
= iA (   –   ) 

NOTE: 

1) In particular, if A = 0 then  i 
 ⟶ 
∫        
 

= 0. 

2) Res f(z) =  i 
 ⟶ 

-z f(z)   

Jordan’s lemma 20: 

If       is analytic except at finite number of singularities and if        as 

     Then  i    ∫  
   

 
               where   denotes the semi 

circle  | |                  
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Proof: 

Choose R so large that all the singularities of f(z) lie with in Γ and none on its 

boundary. Since        uniformly as | |   . Therefore, there exists     

such that |    |    for every    on                   

Now, |∫           
 

 
|   ∫ |    ||    ||  |

  
 

    Put        

      ∫ |     
  
|

 

 
 |       | 

     =  ∫ |                |   
 

 
 

                         =  ∫ |        ||        |
 

 
    

        ∫         
 

 
     [ |       |   ] 

                             ∫  
 (  

  

 
) 

 
     [ 

  

 
       ] 

                           
   

    
[    

  

 ]
 

 

 

                            
   

   
          

           as     and      

                                       i    ∫  
    

  
         

Result: 

1. If  i             then  i    ∫       
 

  
    

 

2. If  i             then  i    ∫  
         

 

  
    



163 
 

 

 

3. If  C is the arc of the circle |   |    such that         and         

 i                 then  i    ∫                  
 

 
 

 

4. If C is the arc of the circle | |    such that         and 

 i            then  i    ∫                  
 

 
 

TYPE II: 

 Evaluation of integrals of the form  ∫        
 

  
where      is analytic in 

the upper half plane except at a finite number of points and have  no poles on the 

real axis. 

           Above type of integrals are evaluated by integrating       around C 

consisting of a semi circle    of radius R large enough to include all the poles of  

     and the part of the real axis from –R to R.  

Therefore, by Cauchy’s Residue theorem 

 ∫            Sum of the residue of the poles of f z within C 
 

 

 

  ⇒ ∫       
 

  
 ∫       
 

  
    ∑   

where ∑    denotes the sum of the residue of the poles in the upper half. 

It can be shown that,   if   i           ⇒   i    ∫       
 

  
   

Also,  i    ∫       
 

  
 ∫       
 

  
  and ∫       

 

  
    ∑    

Problem 1:    Evaluate ∫
  

       

 

 
 

Solution: 
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Consider ∫       
 

 
, where C is the contour consisting of a large semi circle  

   of radius R along with the part of the real axis from –            
 

       
 

   ∫       

 

 

    ∑     

where ∑   Sum of the residue of the poles in the upper half plane  

∫      

 

  

 ∫      

 

  

    ∑   

 i 
   
        i 

   

 

       
        i 

   
∫      

 

  

   

Also,  i    ∫       
 

  
 ∫       
 

  
  and ∫       

 

  
    ∑   

∫
  

       

 

  

    ∑   

To find the pole of         

     
 

       
                    ⇒      

  Therefore      has only one pole z = i of order 2  lies in the upper half of the 

plane. 

       
      i 

   

 

  
  
 

  
             

                                                          i    
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[      
 

       
 

 

            
] 

  i 
   

  

      
      

 
  

     
 
  

   
 
  

   
 
 

  
 

 ∫
  

       

 

  

    ∑       
 

  
 
 

 
 

 ∫
  

       

 

 

 
 

 
∫

  

       

 

  

 
 

 
 

Problem 2.  Evaluate ∫
    

        

 

  
   (a is real and a > 0)  

Solution: Here      
  

        
  and   i           i    

  

        
  …(1) 

Consider  ∫       
 

 
 where C is the contour consisting of a large semi circle   

   of radius R along with the part of the real axis from –        

   ∫       

 

 

    ∑    

∫      

 

  

 ∫      

 

  

    ∑   

∫
    

        

 

  

 ∫
    

        

 

 

    ∑   
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From (1), We have      i    ∫       
 

  
   

⇒  i 
   
∫
    

        

 

  

                      

Also,        i    ∫       
 

  
 ∫       
 

  
 

 i 
   
 ∫

    

        
 ∫

    

        

 

  

 

  

 

 ∫
    

        

 

  

    ∑   

To find the pole of       

     
  

        
   ⇒           ⇒       

Poles of                   

  Therefore      is the only pole of order 3 lies in the upper half plane. 

         
      i 

    

 

  
  
  

   
.       

  

        
/ 

                                   i 
    

 

  
  
  

   
.       

  

                
/ 

  i 
    

 

 
  
  

   
 .
  

       
/ 

  i 
    

 

 
  
  

   
.
       

       
/ 
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            i 
    

 

 
 .
              

       
/ 

              
 

 
 .
                    

      
/ 

              
 

 
  
   

     
  
 

     
                           

  Therefore     ∫
    

        

 

  
     

 

     
 
 

   
   

Problem 3.     Evaluate ∫
      

         
  

 

  
 

Solution:  Here f(z) = 
      

         
 

Consider ∫       
 

 
 where C is the contour consisting of a large semi circle    of 

radius R along with the part of the real axis from –         

   ∫       

 

 

    ∑    

where ∑   sum of the residue of the poles in the upper half plane  

∫      

 

  

 ∫      

 

 

    ∑   

 i 
   
       i 

   
 .
      

         
/    

  Therefore    i 
   
∫      
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Also,  i    ∫       
 

  
 ∫       
 

  
 

∫           ∑  
 

  

 

∫
      

         

 

  

    ∑   

To find the poles of       
      

         
 

            

   
            

 
 

             
       

 
 
     

 
 

                                                           

                                                              

      is a pole of order 1 lies with in the upper half plane. 

       
      i 

   
           

                                                                  i         
      

         
 

                                                                  i         
      

                    
 

               
      

          
 
   

   
 

      is a pole of order 1 lies with in the upper half plane 
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     i 

    
      

      

      [             ]
 

                                            i     
       

          
 

 
     

    
 
    

   
 

∫
      

         

 

  

     [
   

  
 
    

   
] 

                                      *
         

   
+        

  

   
     

  

  
 

∫
      

         

 

  

 
  

  
 

Problem 4.   Evaluate ∫
  

     

 

 
        

Solution: 

Consider ∫       
 

 
  where C is the contour consisting of a large semi circle    of 

radius R. along with the part of the real axis from –         

  Therefore ∫      

 

 

    ∑    

where ∑   sum of the residue of the poles in the upper half plane  

∫      

 

  

 ∫      

 

 

    ∑   
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∫
  

     

 

  

 ∫
  

     

 

 

    ∑   

 i           i    
 

     
       i     ∫

  

     

 

 
   

Also,  i     ∫
  

     

 

  
 ∫

  

     

 

  
 .  Therefore ∫

  

     

 

  
    ∑   

To find the pole of        
 

     
 

                                           
 

   

                                (   
       

 
     

       

 
)  where           

   Therefore,  the poles are   
  
 ⁄    

   
 ⁄    

   
 ⁄    

   
 ⁄  

   Therefore,    
  
 ⁄  and   

   
 ⁄   are the only poles with in C.  

                   Let    = a 
  

           =       =     

                     es         = 
   
   

̇
(z   )

 

     
 = 
   
   

̇  

   
 

                                = 
   
   

̇  

   
  = 
 

   
  =  

 

   
  =  

  
  
 

   
  =  

 
  
 

   
 

                   Similarly,    es
     

   
 ⁄
      =  

 
   
 

   
 

   ∫
  

     

 

  
 = 2 i∑      = 

    

   
( 
  

   
   

  )           

                 = 
   

   
( 
  

   
   

  )     = 
   

   
(2isin

 

 
)        
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                    = 
 

  
(sin

 

 
)      = 

 

    
 

∫
  

     

 

 
   = 
 

 
∫

  

     

  

  
 

   =
 

 

 

    
      = 

   

   
 

Type III :  

Evaluation of the integrals of  the  form ∫
    

    

  

  
sin   dx , 

∫
    

    

  

  
 os   dx  (m > 0)   where  (i) P(x) and Q(x)  are polynomials  (ii). 

Degree of Q(x)  exceeds that  of P(x) (iii). Q(x) has no real roots. 

Above type of the  integrals  are evaluated  by  integrating  ∫     
 

 f(z) dz   

where  f(z) = 
    

    
  around  a contour C  consisting of a  semicircle   of radius R 

large enough  to  include  all the poles of the integrand  in the upper half plane  

and  also part of the real axis from –R to +R 

 By Cauchy’s residue theorem, ∫     
 

f(z) dz  = 2 i∑   

∫     
  

  
f(x) dx + ∫     

 
f(z) dz= 2 i∑   

By  Jordan’s  lemma,  
   
   

̇
∫     
 

f(z) dz = 0 (m > 0) 

[       implies  f(z) = 
    

    
  ] 

          
   
   

̇
∫     
  

  
f(x) dx  =  ∫     

  

  
f(x) dx 

∫     
 

  
f(x) dx = 2  ∑   

∫   os    sin   
 

  
f(x) dx = 2  ∑   



172 
 

∫  os   
 

  
f(x) dx + i ∫ sin  

 

  
 f(x) dx = 2  ∑   

Equating the real and  imaginary roots, we get the values of the given integral. 

             ∫
    

     

 

 
 dx,  a real and ∫

     

     

 

 
 dx ,  a real 

 Solution:  

       Consider ∫
    

      
dz = ∫     

 
 f(z) dz where C is  the contour consisting of a 

semicircle      of  radius  R large enough  to  include  all the poles  of f(z) in the 

upper half plane and  also the part of the real axis from      to    . 

  Therefore,  By Cauchy’s residue theorem, 

∫     
 

f(z) dz = 2  ∑   

∫     
 

  
f(x) dx + ∫     

 
 f(z) dz = 2  ∑   

∫
    

     

 

  
dx +  ∫

    

      
  dz  = 2  ∑   

Since  
   
   

̇
f(z) = 

   
   

̇  

     
  = 0. By Jordan lemma, 

   
   

̇
∫
    

      
dz = 0 

Also 
   
   

̇
∫

    

     

  

  
  dx = ∫

    

     

  

  
 dx 

Therefore,  ∫
    

     

  

  
dx = 2  ∑   

To find the poles of f(z) 

Z =      are the poles of f(z)  and  Z = ai is the only pole lies within C. 

   
    

̇
f(z) = 

   
    

̇
(z - ai) f(z)     
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                  = 
   
    

̇
(z - ai) 

    

            
    = 

    

   
      

∫
    

     

  

  
dx = 2  ∑    = 2  

    

   
    = 

 

 
     

∫
     

     

 

  
dx + i∫

     

     

 

  
 dx  =  

 

 
     

Equating real and imaginary parts,  ∫
     

     

 

  
dx = 

 

 
     (1) 

∫
     

     

 

  
 dx  = 0  

When m=1, ∫
    

     

 

  
 dx = 

 

 
    

∫
    

     

 

 
dx = 

 

 
∫

    

     

 

  
 dx = 

 

 

 

 
   = 

 

  
    

Differentiate (1) w.r.to m,  ∫
     

     

    

  
 xdx   

= 
 

 
    (-a)   

   =        

Put m = 1,   ∫
     

     

 

  
dx=       

∫
     

     

 

 
 = 
 

 
∫

     

     

 

  
dx      

 

 
     

Problem 2.  ∫
     

 

 

 
dx =  

 

 
 

Solution: 

Consider∫       
 

 , where f(z) = 
    

 
 . It has a singularity at z = 0 on the real 

axis . Let  the contour C consists of large semicircle  | |    indented at z = 0 
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and   be the  radius of this small semicircle of identation. Now  there is no 

singularities  within C. 

 

 

 

 

 

 

 

 

 

By Cauchy’s residue theorem,  ∫       
 

 = 2  ∑  = 0  

∫        ∫        ∫        ∫       
 

 

  

  

  
 = 0 

   
   

∫         
 

̇
= 0 , since  

   
   

     
   
   

 

 

̇̇
 = 0 

     
   
   

∫
    

  

̇
 = 0 [By  Jordan lemma] 

Consider  ∫       
 

  where   is the circle  | | =   

   
   

      
   
   

 
    

 

̇̇
 = 1 

   
   

∫       
 

̇
 =              =          =     

The negative sign is taken because the orientation  is clockwise 

Taking  R   and      

 

- R  R        

  

γ 

Fig.5.2 
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∫            ∫       
 

 
  

 

  
 = 0    ∫          

 

  
 

 ∫
    

 
     

 

  
     ∫ (

            

 
)

  

  
   = i  

Equating real and imaginary parts,  ∫
     

 
   

  

  
= 0 and ∫

     

 
  

  

  
 =   

  Therefore  ∫
     

 
     

 

 
   ∫

     

 
    

 

 

 

 
  

Type IV : 

 Evaluation of the integrals of the type ∫   
 

 
       

Problem 1: ∫
    

    

 

 
    and hence deduce that ∫

       

    
  

 

 
  
  

 
  and 

∫
         

 og  

  

    
  og

   
  
 

   
  
 

 

 

 

Solution:      Consider  ∫       
 

 , where f(z) = 
    

    
 , 0 < a < 2. z = 0  is a 

singularity of f(z) for 0 < a < 1. 

 The poles of f(z) are given by z =          [      ]  

The contour C consists   of the large semicircle | | = R in the upper half plane  

and the real axis from     to     intented at z = 0 and by a small circle ɣ of 

radius  , the only pole lying within C is z = i. 

 es
   
      i 

   
          

  i 
   
     

    

          
  i 
   

    

     
 

                                  
    

  
 
       

 
= 
  

 
  = 
  

 
 
   

           [as  i = 
  

 ] 
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By Cauchy’s Residue Theorem,   ∫              
 

 

∫        ∫        ∫       ∫       

 

 

  

  

  

  

                          =     (
  

 
)  
   

      
   

  ....(1) 

 i 
   
       i 

   

      

    
   

   i    ∫           
                

 Also, i           i     
    

    
  i    

  

    
 

                                     =  i    
 

        
 

  
 
       [         ] 

                i    ∫          
 

Taking Limit     and R   in (1), We have 

- R  R        

  

  

Fig.5.3 

γ 
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∫         ∫              
   
 

 

 

 

  

 

∫
    

    

 

  
   ∫

    

    
       

   

 
 

 
…..(2) 

Consider ∫
    

    
  

 

  
 

Put x = -y ; x = -  ; y =   ; x = 0 ; y = 0 

  Therefore   ∫
       

    

 

 

      ∫
           

    
  

 

 

 

= ∫
         

    
  

 

 
      ∫

    

    
  

 

 
            [-1=   ] 

Substitute in (2),       ∫
    

    
   ∫

    

    
       

   

 
 

 

 

 
 

(      )∫
    

    
       

   
 

 

 

 

 
   
 ( 

    
   

   
 )∫

    

    
       

   
 

 

 

 

  i sin
  

 
∫
    

    
      

 

 

 

 ∫
    

    
   

 

 
 ose 

  

 

 

 
…...(3) 

Diff. w.r.t. a,  ∫
        

    
   

   

 
 ose 

  

 
 ot
  

 

 

 
   = 
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Diff. again w.r.t. a            ∫
           

    
   

  

 

      
  

 

    
  

 

 

 
 

Put a = 1,                           ∫
       

    
   

  

 

      
 

 

    
 

 

 
  

 

 

 
 

Integrating (3) w.r.t. a, 

∫
    

          
     (

 

 
)
      

  

 

(
 

 
)

 

 
   =   og t n

  

 
                        …..(4) 

Also              ∫
    

          
    og t n

  

 

 

 
                                …..(5) 

Now, (4) - (5)        

     ∫
              

            

 

 
    =    log tan 

  

 
   -    log tan 

  

 
      

                                             =    log    
    

  

 

    
  

 

         

Problem 2.     ∫
               

      

 

 
   ,  0 < α < 1 

 Solution:  

    Consider   ∫       
 

   where f(z) =  
           

      
  where C is the semi-circle 

given by |z| =R  where R is every large intended at z = 0  by a small semi-circle 

   of radius     and the real axis from –R to R. 

Therefore,  f(z) is analytic with C. 

  Therefore,  By Cauchy residue theorem,  ∫       
 

   =0 

  ∫       
  

  
   +  ∫       

 
   +  ∫       

 

 
   +  ∫       

 
   = 0 ……..(1) 
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   i           =   i      
           

    
  

 

 

 

 

 

 

  

 

   

                          =   i 
   

 
       

   

 
                              

  
 [Since, |z|<1] 

                          =   0 

             i 
   

     ∫       
 

      = 0 

           i          =   i      
           

    
  

                                  =     i 
   

  
 

  
  log        

 

  
  

                                  =     i 
   

  
                

 

  
  

  
  

                                       =    i 
   

   [      
     

 
   

 

  
         

 

  
 ]      

                                  =   2  i 
   

       
     

 
   +  i 
   

   
 

  
  
 

  
 
 

   
  ...........) 

                                  = 0   [Since,    i 
   
  
     

 
  = 0] 

 

- R  R        

  

γ 

Fig.5.4 
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 i 
   

  ∫       
 

       = 0 [by lemma (2)] 

Taking limit R        and      0   in    (1) 

∫        
 

  
 + 0 +  ∫        

 

 
  + 0 = 0 

∫
             

      

 

  
   +   ∫

             

      

 

 
    = 0      ……….(2)                

    Consider I =   ∫
             

    

 

  
  

            Put x = -y When x= -  ,   y=    and    x= 0,  y= 0   

  Therefore,    I =  ∫
                

       

 

 
 

         =   ∫
             

         

 

 
      [since -1 =     ] 

         =    ∫
             

               

 

 
 

         =       ∫
             

         

 

 
 

         =   -          ∫
             

    

 

 
     …………… (3) 

Sub (3) in (2) 

        0 =           ∫
             

    

 

 
     +   ∫

             

    

 

 
 

  Therefore,  (1-     ) ∫
             

    

 

 
   =  0 

  Therefore ∫
             

    

 

 
   =  0 
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Problem 3.   Evaluate   ∫
          

    

 

 
    and    ∫

           

    

 

 
 

Solution: 

     Consider ∫       
 

 , where f(z) = 
        

    
,   z = 0 the branch point of f(z) 

 and poles of f (z) is given by z = +i and z = -i. 

      Let C be the large semi-circle, |z| = R indented at z = 0 and    the radius of 

small semi-circle of indentation.  The pole z = i lies within C. 

        es         =    i           
        

          
        

                            =   
        

  
   =  

   
 

 
  

  
 =  - 

  

  
    [Since log i =  i 

 

 
  ] 

     Therefore,    By Cauchy Residue Theorem, 

            Therefore,    ∫       
 

   = 2   i ∑ +
 

                                    =   2   i   
  

  
   =    

  

 
 

   ∫    
  

  
   +  ∫       

 
   +  ∫       

 

 
   +  ∫       

 
     = 0    …….(1) 

     i            =   i    
          

    
      =   i    

          

     
 

  
 
  

                                  =    i 
   
  
         

 
      i 
   
    

 

   
 

  
 
      

                                    =  i 
   
  
         

 
      
 

 
      =     i 

   
  
       

 
                                                                                                                                                                                         

                                     = 2 ( 0)         [ Since,     i 
   

  
      

 
  = 0 ] 
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                                  =   0 

  Therefore,   i 
   

    ∫       
 

   = 0 

 i 
   

 z f (z)  =    i 
   

  
          

    
  

                   Put z =  
 

 
 

  Therefore,    i 
   

  z f(z)   =   i 
   

  
      

 

 
  

    
 

  
 
    =     i 

   
  
         

    
 

  
 

  

                        =   i 
   

  
          

    
      = 0 (as above ) 

  Therefore,     i 
   

    ∫       
 

  = 0 

Applying             0 and R        we get 

(1)    ∫       
 

  
    +   ∫       

 

 
    =   -  3

/4  

∫
           

    

 

  
    +  ∫  

           

    
     

 

 
=   
    

 
     …………….(2) 

Consider     I =  ∫
           

    

 

  
      

Put x = -y  when   x = -   ,   y =   and    x = 0 , y =0 

       I   =  ∫
                 

    

 

 
 

            =   ∫
                    

    

 

 
  

        I = ∫
                

    

 

 
        [Since,  log (-1) =      ] 
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            =   ∫
                      

    

 

 
        

            =     2
 ∫

  

    

 

 
 + ∫

          

    

 

 
  + 2   ∫

       

    

 

 
                                                                                   

            =         t n     
      +   ∫

          

    

 

 
   + 2   ∫

       

    

 

 
                                                                                        

            =  
   

 
 + ∫

          

    

 

 
   + 2   ∫

       

    

 

 
….(3) 

From     (2) and (3)                                                                                                          
   

 
 + ∫

          

    

 

 
   + 2   ∫

       

    

 

 
  + ∫

          

    

 

 
  =   

   

 
 

Equating Real and Imaginary Part 

               
   

 
 +2 ∫

          

    

 

 
       =  

   

 
 

                        2 ∫
          

    

 

 
  =  
   

 
+ 
  

 
 = 
  

 
  

                              ∫
           

    

 

 
    = 

  

 
   and  ∫

       

    

 

 
  = 0 

TYPE: V   Integrals involving many valued function: 

Problem 1: 

  Evaluate   ∫  og sin x dx
 

 
    

Solution: 

   Consider ∫        
 

 where f (z) = log (1-     ) and choose the contour C 

as follows , within the contour C , f(z) is regular. 
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By Cauchy Residue Theorem,  ∫       
 

 = 0, where f (z) = log (1-     )   

     ∫       
    

  
 + ∫       
  

  +  ∫           
 

  
 + ∫          
 

 
 

                                              + ∫         
  

 
   + ∫       

  
  = 0 

                  I1+ I2 +  I3 +  I4 + I5 +  I6 = 0 

Consider   I3 = ∫           
 

  
  

                      =  ∫                     
 

  
    

                      = ∫                
 

  
 

                    I5 =    ∫         
  

 
   

                        =   ∫                   
  

 
  

                         = ∫                
  

 
    

        

          

1  
2  

5.5.Fig  
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As n      ,  1 , 2    0 

I3     ∫                
 

 
 

I5    ∫                
 

 
  = - ∫                

 

 
 

I3 + I5      0 

  Therefore   i 
   

 z f (z)  =    i 
   

 z log (      )  

                                       =   i 
   

  
            

 

 

  

                                        =  i    

 

      
(     )  

 
 

  

   

                                      =   i 
   
 
        

      
  (By L’Hopital rule) 

                                      =    i 
   
 
                    

       
  =  0 

 i   ⟶ ∫               
.  

Similarly,   i   ⟶ ∫         
  = 0  

Consider   I4  =     ∫                    
 

 
 

                       =    ∫                    
 

 
    0 as n     

As n      ,  1 , 2    0  we get ∫         
 

 
. 

                                   ∫                
 

 
  = 0 

       =     (           =     (- 2i sinx) 



186 
 

∫             i sinx    
 

 
  = 0 

   ∫        
 

 
 + ∫  og        
 

 
 + ∫          
 

 
 + ∫           
 

 
 = 0 

     log2 + log(-i)   +∫      
 

 
 + ∫           
 

 
 = 0 

     log2 - 
   

 
  +  (

  

 
)
 

 

+ ∫           
 

 
 = 0 

     log2 - 
   

 
  +  
   

 
+ ∫           
 

 
 = 0 

∫           
 

 

             

 

 

 


